-
Notifications
You must be signed in to change notification settings - Fork 3
/
train_NbrReg.py
290 lines (213 loc) · 9.31 KB
/
train_NbrReg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
################################################################################################################
# Author: Suthee Un
# schaidaroon@scu.edu
################################################################################################################
from dotmap import DotMap
import numpy as np
import scipy.io
import pickle
import os
from utils import *
from tqdm import *
import sklearn.preprocessing
from scipy import sparse
import argparse
##################################################################################################
parser = argparse.ArgumentParser()
parser.add_argument("-g", "--gpunum", help="GPU number to train the model.")
parser.add_argument("-d", "--dataset", help="Name of the dataset.")
parser.add_argument("-b", "--nbits", help="Number of bits of the embedded vector.", type=int)
parser.add_argument("--train_batch_size", default=100, type=int)
parser.add_argument("--test_batch_size", default=100, type=int)
parser.add_argument("--transform_batch_size", default=100, type=int)
parser.add_argument("--num_epochs", default=30, type=int)
parser.add_argument("--lr", default=0.001, type=float)
args = parser.parse_args()
if not args.gpunum:
parser.error("Need to provide the GPU number.")
if not args.dataset:
parser.error("Need to provide the dataset.")
if not args.nbits:
parser.error("Need to provide the dataset.")
##################################################################################################
DATASET = args.dataset
data = Load_Dataset("data/{}.mat".format(DATASET))
##################################################################################################
label_binarizer = sklearn.preprocessing.LabelBinarizer()
label_binarizer.fit(range(data.n_tags))
gnd_train = data.gnd_train
gnd_test = data.gnd_test
##################################################################################################
print(gnd_train.shape)
print(gnd_test.shape)
print('num train:{}'.format(data.n_trains))
print('num test:{}'.format(data.n_tests))
train_topk_docs_db = TopDoc('bm25/{}_train_top101.txt'.format(DATASET), is_train=True)
test_topk_docs_db = TopDoc('bm25/{}_test_top101.txt'.format(DATASET), is_train=False)
##################################################################################################
import torch
import torch.autograd as autograd
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.nn import Parameter
##################################################################################################
class NbrReg(nn.Module):
def __init__(self, vocabSize, latentDim, dropoutProb=0.):
super(NbrReg, self).__init__()
self.hidden_dim = 1000
self.vocabSize = vocabSize
self.latentDim = latentDim
self.dtype = torch.cuda.FloatTensor
self.fc1 = nn.Linear(self.vocabSize, self.hidden_dim)
self.fc2 = nn.Linear(self.hidden_dim, self.hidden_dim)
self.fc31 = nn.Linear(self.hidden_dim, self.latentDim)
self.fc32 = nn.Linear(self.hidden_dim, self.latentDim)
self.dropout = nn.Dropout(p=dropoutProb)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
self.log_softmax = nn.LogSoftmax(dim=1)
self.fc41 = nn.Linear(self.latentDim, self.vocabSize)
self.nn_fc41 = nn.Linear(self.latentDim, self.vocabSize)
def encode(self, document_mat):
documents = Variable(torch.from_numpy(document_mat).type(self.dtype))
h1 = self.relu(self.fc1(documents))
h2 = self.relu(self.fc2(h1))
h3 = self.dropout(h2)
z_mu = self.fc31(h3)
z_logvar = self.sigmoid(self.fc32(h3))
return z_mu, z_logvar
def decode(self, Z):
word_prob = self.fc41(Z)
word_prob = self.log_softmax(word_prob)
nn_word_prob = self.nn_fc41(Z)
nn_word_prob = self.log_softmax(nn_word_prob)
return word_prob, nn_word_prob
def reparametrize(self, mu, logvar):
std = torch.sqrt(torch.exp(logvar))
if self.cuda:
eps = torch.cuda.FloatTensor(std.size()).normal_()
else:
eps = torch.FloatTensor(std.size()).normal_()
eps = Variable(eps)
return eps.mul(std).add_(mu)
def forward(self, document_mat):
mu, logvar = self.encode(document_mat)
z = self.reparametrize(mu, logvar)
prob_w, nn_prob_w = self.decode(z)
return prob_w, nn_prob_w, mu, logvar
def calculate_KL_loss(mu, logvar):
KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
KLD = torch.sum(KLD_element, dim=1)
KLD = torch.mean(KLD).mul_(-0.5)
return KLD
def compute_reconstr_loss(log_word_prob, document_mat):
loss = None
for idx, doc_vec in enumerate(document_mat):
word_indices = doc_vec.nonzero()
word_indices = Variable(torch.from_numpy(word_indices[0]).type(torch.cuda.LongTensor))
pred_logprob = torch.gather(log_word_prob[idx], 0, word_indices)
if loss is None:
loss = -torch.sum(pred_logprob)
else:
loss.add_(-torch.sum(pred_logprob))
return loss / document_mat.shape[0]
def batch_compute_NN_reconstr_loss(log_word_prob, batch_nn_docs):
batch_nn_docs = np.sum(batch_nn_docs, axis=1)
nn_loss = None
for docIdx, nn_docs in enumerate(batch_nn_docs):
word_indices = np.nonzero(nn_docs)
word_indices = Variable(torch.cuda.LongTensor(word_indices[0]))
pred_logprob = torch.gather(log_word_prob[docIdx], 0, word_indices)
if nn_loss is None:
nn_loss = -torch.sum(pred_logprob)
else:
nn_loss.add_(-torch.sum(pred_logprob))
return nn_loss / float(len(batch_nn_docs))
##################################################################################################
GPU_NUM = args.gpunum
NUM_BITS = args.nbits
TEST_BATCH_SIZE = args.test_batch_size
os.environ["CUDA_VISIBLE_DEVICES"]=GPU_NUM
model = NbrReg(data.n_feas, NUM_BITS, dropoutProb=0.1)
model.cuda()
nn_TOP_K = 20
nn_TOP_Candidates = nn_TOP_K
def transform(doc_mat, batch_size=500):
Z = None
model.eval()
for idx in range(0, doc_mat.shape[0], batch_size):
if idx + batch_size < doc_mat.shape[0]:
batch_train = doc_mat[idx:idx+batch_size]
else:
batch_train = doc_mat[idx:]
mu, _ = model.encode(batch_train)
if Z is None:
Z = mu.cpu().data.numpy()
else:
Z = np.concatenate((Z, mu.cpu().data.numpy()), axis=0)
return Z
transform_batch_size = args.transform_batch_size
test_batch_size = args.test_batch_size
TopK = 100
def run_test():
model.eval()
test_loss = 0
z_train = transform(data.train.toarray(), batch_size=transform_batch_size)
z_test = transform(data.test.toarray(), batch_size=transform_batch_size)
medHash = MedianHashing()
cbTrain = medHash.fit_transform(z_train)
cbTest = medHash.transform(z_test)
gnd_train = data.gnd_train.toarray()
gnd_test = data.gnd_test.toarray()
return run_topK_retrieval_experiment_GPU_batch_train(cbTrain, cbTest,
gnd_train, gnd_test,
batchSize=test_batch_size, TopK=100)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
BATCH_SIZE = args.train_batch_size
NUM_EPOCHS = args.num_epochs
use_noisy = False
# KL weight annealing
klWeight = 0.
klStepSize = 1 / 5000.
#run_test()
BestPrec = 0.
BestRound = 0
for iteration in range(1, NUM_EPOCHS + 1):
model.train()
train_loss = []
pbar = tqdm(total=data.n_trains, ncols=0)
for batch_idx in range(0, data.n_trains, BATCH_SIZE):
s_idx = batch_idx
e_idx = min(s_idx + BATCH_SIZE, data.n_trains)
batch_train = data.train[s_idx:e_idx]
batch_train = batch_train.toarray()
optimizer.zero_grad()
word_prob, nn_word_prob, mu, logvar = model(batch_train)
reconstr_loss = compute_reconstr_loss(word_prob, batch_train)
# compute nn reconstruction loss
batch_nn_docs = []
for docId in range(s_idx, e_idx):
if not use_noisy:
nn_docList = train_topk_docs_db.getTopK(docId, nn_TOP_K)
else:
nn_docList = train_topk_docs_db.getTopK_Noisy(docId, nn_TOP_K, nn_TOP_Candidates)
nn_docs = data.train[nn_docList].toarray()
batch_nn_docs.append(nn_docs)
batch_nn_docs = np.stack(batch_nn_docs)
nn_reconstr_loss = batch_compute_NN_reconstr_loss(nn_word_prob, batch_nn_docs)
kl_loss = calculate_KL_loss(mu, logvar)
loss = reconstr_loss + nn_reconstr_loss + (klWeight * kl_loss)
loss.backward()
optimizer.step()
klWeight = min(klWeight + klStepSize, 1.)
train_loss.append(loss.item())
pbar.set_description("{}: NbrReg Best Round:{} Prec:{:.4f} AvgLoss:{:.3f}"
.format(iteration, BestRound, BestPrec, np.mean(train_loss)))
pbar.update(len(batch_train))
pbar.close()
prec, _ = run_test()
BestPrec = max(BestPrec, prec)
if BestPrec == prec:
BestRound = iteration