-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalysis_uncertainty.py
119 lines (86 loc) · 3.83 KB
/
analysis_uncertainty.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import sys
import math
import numpy as np
# UNCERTAINTY FUNCTIONS written by Adrian Alcolea ("https://github.com/AdrianAlcolea") for the work presented in:
"https://github.com/universidad-zaragoza/BNN_for_hyperspectral_datasets_analysis"
# =============================================================================
# H --> PREDICTIVE (ALEATORIC + EPISTEMIC)
def _predictive_entropy(prediction):
_, num_pixels, num_classes = prediction.shape
entropy = np.zeros(num_pixels)
for p in range(num_pixels):
for c in range(num_classes):
avg = np.mean(prediction[..., p, c])
if avg == 0.0:
avg = sys.float_info.min
entropy[p] += avg * math.log(avg)
return -1 * entropy
# Ep --> ALEATORIC
def _expected_entropy(prediction):
num_tests, num_pixels, num_classes = prediction.shape
entropy = np.zeros(num_pixels)
for p in range(num_pixels):
for t in range(num_tests):
class_sum = 0
for c in range(num_classes):
val = prediction[t][p][c]
if val == 0.0:
val = sys.float_info.min
class_sum += val * math.log(val)
entropy[p] -= class_sum
return entropy / num_tests
# ANALYSIS FUNCTIONS
# =============================================================================
def reliability_diagram(predictions, y_test, num_groups=10):
num_classes = predictions.shape[2]
prediction = np.mean(predictions, axis=0) # Bayesian samples average
labels = np.zeros((len(y_test), num_classes))
labels[np.arange(len(y_test)), y_test] = 1 # Labels to one-hot
p_groups = np.linspace(0.0, 1.0, num_groups + 1)
p_groups[-1] += 0.1 # For including the last value
result = []
for i in range(num_groups):
group_avg = labels[(prediction >= p_groups[i]) & (prediction < p_groups[i + 1])]
result.append(group_avg.sum() / len(group_avg))
return result
def accuracy_vs_uncertainty(predictions, y_test, num_groups=15):
test_H = _predictive_entropy(predictions)
test_ok = np.mean(predictions, axis=0).argmax(axis=1) == y_test
H_groups = np.linspace(0.0, 1.5, num_groups + 1)
H_acc = []
p_pixels = []
for i in range(num_groups):
group = test_ok[(test_H >= H_groups[i]) & (test_H < H_groups[i + 1])]
p_pixels.append(len(group)/len(y_test))
H_acc.append(group.sum() / len(group))
return H_acc, p_pixels
def analyse_entropy(prediction, y_test):
model_H = _predictive_entropy(prediction)
model_Ep = _expected_entropy(prediction)
model_H_Ep = model_H - model_Ep
num_classes = prediction.shape[2]
class_H = np.zeros(num_classes + 1)
class_Ep = np.zeros(num_classes + 1)
class_H_Ep = np.zeros(num_classes + 1)
class_px = np.zeros(num_classes + 1, dtype='int')
for px, (H, Ep, H_Ep, label) in enumerate(zip(model_H, model_Ep,
model_H_Ep, y_test)):
label = int(label)
class_H[label] += H
class_Ep[label] += Ep
class_H_Ep[label] += H_Ep
class_px[label] += 1
class_H[-1] += H
class_Ep[-1] += Ep
class_H_Ep[-1] += H_Ep
class_px[-1] += 1
return class_H/class_px, class_Ep/class_px, class_H_Ep/class_px
# PREDICTIONS FUNCTION
# =============================================================================
def bayesian_predictions(model, X_test, samples=100):
# Bayesian stochastic passes
predictions = []
for i in range(samples):
prediction = model.predict(X_test)
predictions.append(prediction)
return np.array(predictions)