-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_fnsp.py
178 lines (132 loc) · 4.72 KB
/
train_fnsp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import argparse
import os
import glob
import xml.etree.ElementTree as ET
import pandas as pd
import re
from scipy.stats import uniform as sp_rand
import numpy as np
import emoji
from emoji import UNICODE_EMOJI
from nltk.tokenize import TweetTokenizer
import pickle
from features_fnsp import *
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import confusion_matrix, classification_report
def iter_docs(author):
author_attr = author.attrib
doc_dict = author_attr.copy()
# print(doc_dict)
doc_dict['text'] = [' '.join([doc.text for doc in author.iter('document')])]
return doc_dict
def create_data_frame(input_folder):
os.chdir(input_folder)
all_xml_files = glob.glob("*.xml")
truth_data = pd.read_csv('truth.txt', sep=':::', names=['author_id', 'spreader'])
temp_list_of_DataFrames = []
text_Data = pd.DataFrame()
for file in all_xml_files:
etree = ET.parse(file)
doc_df = pd.DataFrame(iter_docs(etree.getroot()))
doc_df['author_id'] = file[:-4]
temp_list_of_DataFrames.append(doc_df)
text_Data = pd.concat(temp_list_of_DataFrames, axis=0)
data = text_Data.merge(truth_data, on='author_id')
return data
def getArg():
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--input", help="input directory path", required=True)
parser.add_argument("-o", "--output", help="ouput directory path" )
args = parser.parse_args()
print("input {} output {} ".format(
args.input,
args.output,
))
return args.input, args.output
def Model(X_train, X_test, y_train, y_test):
from sklearn.linear_model import LogisticRegression
LogisticRegression = LogisticRegression()
from sklearn.ensemble import RandomForestClassifier
RandomForestClassifier = RandomForestClassifier()
from sklearn.naive_bayes import MultinomialNB
MultinomialNB = MultinomialNB()
from sklearn.svm import SVC
SVC = SVC(kernel='linear', gamma='scale')
from sklearn.ensemble import GradientBoostingClassifier
gb_clf = GradientBoostingClassifier()
models = {'LogisticRegression': LogisticRegression,
'RandomForestClassifier': RandomForestClassifier,
'MultinomialNB': MultinomialNB,
'SVC': SVC,
'GBC': gb_clf}
predictions = {}
accuracy = {}
for model in models:
print(models[model])
models[model].fit(X_train, y_train)
predictions[model] = models[model].predict(X_test)
accuracy[model] = accuracy_score(y_test, predictions[model])
print('Best Model', max(accuracy, key=accuracy.get))
print(classification_report(y_test, predictions[max(accuracy, key=accuracy.get)]))
model = models[max(accuracy, key=accuracy.get)]
return model
def buildModels(model, features, classLabel, modelname,lang):
model.fit(features, classLabel)
print(root)
try:
os.chdir(root)
print('Change current Dir to ' + root)
except Exception as e:
print(e)
try:
os.mkdir('models')
print('Make Dir to models')
except Exception as e:
print(e)
try:
os.chdir('models')
print('Change current Dir to models')
except Exception as e:
print(e)
try:
os.mkdir(lang)
print('Make Dir '+lang)
except Exception as e:
print(e)
try:
os.chdir(lang)
print('Change current Dir to '+lang)
except Exception as e:
print(e)
print('Saving model')
pickle.dump(model, open(modelname, 'wb'))
try:
os.chdir(root)
print('Change current Dir to '+root)
except Exception as e:
print(e)
def Language(input_folder,lang):
input_folder = os.path.join(input_folder,lang)
data = create_data_frame(input_folder)
preprocess(data)
#wordvectorize(data)
#charvectorize(data)
if data.isnull().values.any():
data.isnull().values.any()
data.fillna(0, inplace=True)
X_train, X_test, y_train, y_test = train_test_split(
data.drop(['lang', 'text', 'author_id', 'spreader'], axis=1), data['spreader'], test_size=0.3, random_state=128, shuffle=True)
model = Model(X_train, X_test, y_train, y_test)
features = data.drop(['lang', 'text', 'author_id', 'spreader'], axis=1)
classLabel = data['spreader']
print('Building model for To Be a spreader or NOT to Be')
buildModels(model, features, classLabel, 'modelSpreaders',lang)
def main():
global root
root = os.getcwd()
input_folder, output_folder = getArg()
Language(input_folder,'en')
Language(input_folder,'es')
if __name__ == "__main__":
main()