Skip to content

Latest commit

 

History

History
63 lines (45 loc) · 1.39 KB

README.md

File metadata and controls

63 lines (45 loc) · 1.39 KB

LLM Edge Finetuning

Using serverless to fine-tune an LLM for the edge

Setup

python -m venv ~/venvs/llm-edge-finetuning
source ~/venvs/llm-edge-finetuning/bin/activate
pip install -e .

Usage

Run the fine-tuning job locally using a small model for testing:

unionai run llm_edge_finetuning/workflows_news.py train_workflow \
    --config config/pythia_70b_deduped.json \
    --categories '["science", "technology", "business"]'

Run the fine-tuning job on Union serverless:

unionai run --copy-all --remote \
    llm_edge_finetuning/workflows_news.py train_workflow \
    --config config/phi_3_mini_128k_instruct.json \
    --categories '["science", "technology", "business"]'

Change the --config input to one of the following files in the config directory to fine-tune a larger model:

  • config/phi_3_mini_128k_instruct.json
  • config/codellama_7b_hf.json
  • config/llama_3_8b_instruct.json

Local Inference

Download the fine-tuned model:

huggingface-cli download \
    unionai/Phi-3-mini-128k-instruct-news-headlines-gguf \
    --local-dir ~/models/phi-3-mini-128k-instruct-news-headlines-gguf

Create the model in Ollama using the Modelfile created by the workflow:

ollama create phi3-news -f Modelfile

Interact with the model locally

ollama run phi3-news
> What are the latest top news headlines in science?