-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmethod_comparison.R
256 lines (193 loc) · 7.55 KB
/
method_comparison.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# METHOD COMPARISON
# Monte Carlo approach with increased samples
library(MASS)
library(mvtnorm)
# Monte Carlo approach with prior variance adjustment
calc_BF_monte_carlo <- function(N, mean_prior, hypothesis, mean_posterior, sigma_posterior, n_samples = 10000) {
constraints <- unlist(strsplit(hypothesis, " "))
params <- constraints[seq(1, length(constraints), 2)]
mean_prior <- mean_prior[params]
mean_posterior <- mean_posterior[params]
region <- function(x) {
names(x) <- names(mean_prior)
result <- TRUE
for (i in seq(1, length(constraints) - 2, 2)) {
param1 <- constraints[i]
constraint <- constraints[i + 1]
param2 <- constraints[i + 2]
if (constraint == ">") {
result <- result && (x[param1] > x[param2])
} else if (constraint == "<") {
result <- result && (x[param1] < x[param2])
} else if (constraint == "=") {
result <- result && (x[param1] == x[param2])
}
if (!result) {
return(FALSE)
}
}
return(result)
}
samples_prior <- mvrnorm(n_samples, mu = mean_prior, Sigma = sigma_posterior * N)
colnames(samples_prior) <- names(mean_prior)
in_region_prior <- apply(samples_prior, 1, region)
complexity <- mean(in_region_prior)
samples_posterior <- mvrnorm(n_samples, mu = mean_posterior, Sigma = sigma_posterior)
colnames(samples_posterior) <- names(mean_posterior)
in_region_posterior <- apply(samples_posterior, 1, region)
fit <- mean(in_region_posterior)
BFu <- fit / complexity
return(BFu)
}
# Numerical integration approach with prior variance adjustment
calc_BF_direct <- function(N, mean_prior, hypothesis, mean_posterior, sigma_posterior) {
constraints <- unlist(strsplit(hypothesis, " "))
params <- constraints[seq(1, length(constraints), 2)]
mean_prior <- mean_prior[params]
mean_posterior <- mean_posterior[params]
region <- function(mean, sigma) {
lower <- rep(-Inf, length(mean))
upper <- rep(Inf, length(mean))
for (i in seq(1, length(constraints) - 2, 2)) {
param1 <- constraints[i]
constraint <- constraints[i + 1]
param2 <- constraints[i + 2]
idx1 <- which(names(mean) == param1)
idx2 <- which(names(mean) == param2)
if (constraint == ">") {
lower[idx1] <- mean[idx2]
} else if (constraint == "<") {
upper[idx1] <- mean[idx2]
} else if (constraint == "=") {
lower[idx1] <- mean[idx2]
upper[idx1] <- mean[idx2]
}
}
prob <- pmvnorm(lower = lower, upper = upper, mean = mean, sigma = sigma, keepAttr = F)
return(prob)
}
complexity <- region(mean=mean_prior, sigma=(sigma_posterior * N))
fit <- region(mean=mean_posterior, sigma=sigma_posterior)
BFu <- fit / complexity
return(BFu)
}
# Numerical integration approach with prior variance adjustment by hand
calc_BF_direct_hand <- function(N, sigma, est, hypothesis, fraction=1) {
b <- fraction/N
struc <- unlist(strsplit(hypothesis, " "))
params <- struc[seq(1, length(struc), 2)]
constr <- struc[seq(2, length(struc)-1, 2)]
# Contrast matrix
Tmat <- matrix(0,2,3)
if(all(constr==">")){
lower <- rep(0, length(constr))
upper <- rep(Inf, length(constr))
Tmat[1,c(1,2)] <- Tmat[2,c(2,3)] <- c(1,-1)
} else if(all(constr=="<")){
lower <- rep(-Inf, length(constr))
upper <- rep(0, length(constr))
Tmat[1,c(1,2)] <- Tmat[2,c(2,3)] <- c(-1,1)
} else {stop("not all constraints equal")}
c <- mvtnorm::pmvnorm(lower=lower, upper=upper,
mean=rep(0, length(constr)),
sigma=(Tmat %*% sigma %*% t(Tmat))/b,
keepAttr = F)
f <- mvtnorm::pmvnorm(lower=lower,
upper=upper,
mean=c(Tmat %*% est),
sigma=Tmat %*% sigma %*% t(Tmat),
keepAttr = F)
BFu <- f/c
return(BFu)
}
# Example usage
mean_prior <- c(a = 0, b = 0, c = 0)
mean_posterior <- est <- c(a = 3, b = 2, c = 1)
sigma_posterior <- matrix(c(1, 0.5, 0.5,
0.5, 1, 0.5,
0.5, 0.5, 1), nrow = 3)
sigma <- sigma_posterior
hypothesis <- "a > b > c"
N <- 100
BF_monte_carlo <- calc_BF_monte_carlo(N, mean_prior, sigma_prior, hypothesis, mean_posterior, sigma_posterior)
BF_direct <- calc_BF_direct(N, mean_prior, sigma_prior, hypothesis, mean_posterior, sigma_posterior)
BF_hand <- calc_BF_direct_hand(N=N, sigma=sigma, est=mean_posterior, hypothesis = hypothesis)
BF_pack <- BF(mean_posterior,
Sigma=sigma,
n=N,
hypothesis ="a>b>c")
BF_pack <- BF_pack[["BFtable_confirmatory"]]
BF_monte_carlo
BF_direct
BF_hand
BF_pack
# SIMULATION 1 - growing effect
nsim <- 100
# Initialize a list to store the vectors
mean_post_list <- list()
# Loop to generate each vector
for (i in 0:(nsim-1)) {
# Calculate the difference
diff <- 2 * i / (nsim - 1)
vec <- c(0, diff, 2 * diff)
names(vec) <- c("a", "b", "c")
mean_post_list[[i + 1]] <- vec
}
BFs_mc <- rep(NA, nsim)
BFs_dir <- rep(NA, nsim)
BFs_bain <- rep(NA, nsim)
BFs_pack <- rep(NA, nsim)
BFs_hand <- rep(NA, nsim)
for(i in 1:nsim){
BFs_mc[i] <- calc_BF_monte_carlo(N=N, mean_prior=mean_prior,
hypothesis=hypothesis,
mean_posterior=mean_post_list[[i]],
sigma_posterior=sigma_posterior)
BFs_dir[i] <- calc_BF_direct(N=N, mean_prior=mean_prior,
hypothesis=hypothesis,
mean_posterior=mean_post_list[[i]],
sigma_posterior=sigma_posterior)
a <- bain(n=N, hypothesis = hypothesis, Sigma=sigma_posterior, x=mean_post_list[[i]])
BFs_bain[i] <- a[["fit"]][["BF.u"]][1]
b <- BF(mean_post_list[[i]], Sigma=sigma, n=N, hypothesis = hypothesis)
BFs_pack[i] <- b[["BFtable_confirmatory"]][1,6]
BFs_hand[i] <- calc_BF_direct_hand(N=N, sigma=sigma, est=mean_post_list[[i]], hypothesis=hypothesis)
print(i/nsim)
}
plot(x=seq(1:nsim), y=BFs_hand, type="l")
lines(x=BFs_dir, col="blue")
lines(BFs_bain, col="red")
lines(x=BFs_mc, col="orange")
lines(x=BFs_pack, col="green")
# SIMULATION 2 - only one difference becomes larger
nsim2 <- 100
mean_prior <- c(a = 0, b = 0, c = 0)
sigma_prior <- matrix(c(1, 0.3, 0.3,
0.3, 1, 0.3,
0.3, 0.3, 1), nrow = 3)
mean_posterior <- c(a = 0, b = 0.2, c = 0.4)
sigma_posterior <- matrix(c(1, 0.5, 0.5,
0.5, 1, 0.5,
0.5, 0.5, 1), nrow = 3)
N <- seq(10, 10000, length.out=nsim2)
hypothesis <- "a < b < c"
BFs_mc2 <- rep(NA, nsim)
BFs_dir2 <- rep(NA, nsim)
BFS_bain2 <- rep(NA, nsim)
for(i in 1:nsim2){
BFs_mc2[i] <- calc_BF_monte_carlo(N=N[i], mean_prior=mean_prior,
sigma_prior=sigma_prior,
hypothesis=hypothesis,
mean_posterior=mean_posterior,
sigma_posterior=sigma_posterior)
BFs_dir2[i] <- calc_BF_direct(N=N[i], mean_prior=mean_prior,
sigma_prior=sigma_prior,
hypothesis=hypothesis,
mean_posterior=mean_posterior,
sigma_posterior=sigma_posterior)
a <- bain(x=mean_posterior, Sigma=sigma_posterior, hypothesis=hypothesis, n=N[i])
BFs_bain2[i] <- a[["fit"]][["BF.u"]][1]
print(i/nsim2)
}
plot(x=seq(1:nsim2), y=BFs_mc2, type="l")
lines(x=BFs_bain2, col="red")