forked from danielramskold/S3_species-specific_sequencing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dr_tools.py
852 lines (780 loc) · 27.6 KB
/
dr_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
from __future__ import division, with_statement, print_function, unicode_literals, absolute_import
lastmodified = "11 May 2015"
def memorypercent():
try: import psutil
except: return 0.0
mem = 0.0
for p in psutil.get_process_list():
try:mem += p.get_memory_percent()
except: pass
return mem
def rank(sortby, handleties=0):
""" return rank for each value in sortby, in the same order """
zippedin = list(zip(sortby, list(range(len(sortby)))))
if handleties:
zippedin.sort()
ranks = list(range(len(zippedin)))
lastsameindex = -1
lastsamevalue = None
for ii in range(len(zippedin)):
if zippedin[ii][0] != lastsamevalue:
if lastsameindex != -1:
targetrank = sum(ranks[lastsameindex:ii])/float(ii-lastsameindex)
for jj in range(lastsameindex, ii):
ranks[jj] = targetrank
lastsameindex = ii
lastsamevalue = zippedin[ii][0]
if lastsameindex != -1:
ii = len(zippedin)
targetrank = sum(ranks[lastsameindex:ii])/float(ii-lastsameindex)
for jj in range(lastsameindex, ii):
ranks[jj] = targetrank
else:
import random
random.shuffle(zippedin)
zippedin.sort(key=lambda o:o[0])
ranks = list(range(len(zippedin)))
zippedout = list(zip([z[1] for z in zippedin], ranks))
zippedout.sort()
return [z[1] for z in zippedout]
def globalFDR(pvalues):
""" returns list of global FDR values (corrected p values) in same order as input list
Uses Benjamini-Hochberg method """
pnum = len(pvalues)
pi = 1
zippedin = list(zip(pvalues, list(range(pnum))))
zippedin.sort()
fdr = [z[0] for z in zippedin]
for rank in range(pnum-1,0,-1):
index = rank-1
fdr[index] = min(fdr[index+1], pi*zippedin[index][0]*pnum/rank)
zippedout = list(zip([z[1] for z in zippedin], fdr))
zippedout.sort()
return [z[1] for z in zippedout]
def esttrue(pvalues, minp=0.5, maxp=0.9):
""" crudely estimate true number of non-null-hypothesis-followers from p-value distribution
will underestimate, unsure if it works """
undermin = sum([1.0 for v in pvalues if v <= minp])
undermax = sum([1.0 for v in pvalues if v <= maxp])
return 1-(undermax-undermin)/undermax/(maxp-minp)*maxp
def PtoZ(p):
from scipy.special import erfinv
from math import sqrt
return sqrt(2.0)*erfinv(2.0*p-1.0)
def ZtoP(Z):
from scipy.special import erf
from math import sqrt
return 0.5*(1.0+erf(Z/sqrt(2.0)))
def combinedP(pvalues, weights=None):
""" takes arrays of p-values (preferably 1-sided) and weights (sample sizes if equal variance), returns p-value (1-sided if 1-sided input) """
from math import sqrt
Zs = [PtoZ(p) for p in pvalues]
if weights is None:
Zcombined = sum([Z for Z in Zs])/sqrt(len(Zs))
else:
Zcombined = sum([w*Z for w,Z in zip(weights, Zs)])/sqrt(sum([w**2 for w in weights]))
return ZtoP(Zcombined)
def Ztest(values, popstd, popmean=0):
""" two-tailed test if values are from a normal distributed with standard deviation popstd and mean popmean """
import numpy, math
Z = math.sqrt(len(values))*(numpy.mean(values)-popmean)/popstd
return 2.0*ZtoP(-abs(Z))
def ftest(*args):
""" input: lists of counts, output: p-value """
import ctools
if len(args) == 4 and not hasattr(args[0], '__iter__'):
return ctools.ftest(args[0], args[1], args[2], args[3])
else:
array = list(args[0])
dim = len(array)
for a in args[1:]:
if len(a) != dim: raise ValueError
array += list(a)
return ctools.ftest3(array, dim)
def bootstrap(func, datatuple, controls=1000, confidence=0.95, nullval=0, processes=1, give_median=False):
if processes == 1:
arr = _bootstrap_loop(func, datatuple, controls)
else:
import multiprocessing
arr=[]
jobs=[]
cLeft = controls
q = multiprocessing.Queue()
for pi in range(processes, 0, -1):
jobs.append(multiprocessing.Process(target=_bootstrap_loop, args=(func, datatuple, cLeft//pi, q)))
cLeft -= cLeft//pi
for job in jobs: job.start()
for job in jobs: arr.extend(q.get())
if hasattr(arr[0], '__iter__'):
parr = []
minvarr = []
maxvarr = []
medvarr = []
for a in map(list,list(zip(*arr))):
p, minv, maxv, medv = _bootstrap_points(a, confidence, controls, nullval)
minvarr.append(minv)
maxvarr.append(maxv)
medvarr.append(medv)
parr.append(p)
if give_median:
return tuple(parr), tuple(minvarr), tuple(maxvarr), tuple(medvarr), tuple(func(*datatuple))
else:
return tuple(parr), tuple(minvarr), tuple(maxvarr)
else:
p, minv, maxv, medv = _bootstrap_points(arr, confidence, controls, nullval)
if give_median:
return p, minv, maxv, medv, func(*datatuple)
else:
return p, minv, maxv
def _bootstrap_points(arr, confidence, controls, nullval):
if hasattr(confidence, '__iter__'):
minv, maxv = list(zip(*[pointinarray(arr, [(1-c)/2, (1+c)/2]) for c in confidence]))
medv = pointinarray(arr, 0.5)
else:
minv, maxv, medv = pointinarray(arr, [(1-confidence)/2, (1+confidence)/2, 0.5])
p = sum(v <= nullval for v in arr)/float(controls)
return p, minv, maxv, medv
def _bootstrap_loop(func, datatuple, controls, q=None):
import numpy
arr = []
for ci in range(controls):
resamplings = tuple([data[i] for i in numpy.random.randint(0,len(data),len(data))] for data in datatuple)
arr.append(func(*resamplings))
if q is None:
return arr
else:
q.put(arr)
def p_from_distr(vals, distr):
# same as return [sum(d < v for d in distr)/float(len(distr)) for v in vals], but faster
envals = sorted((v,i) for i,v in enumerate(vals))
p_arr = []
distr = sorted(distr)
ldistr = float(len(distr))
r = 0
p_arr = [-1 for v in vals]
for v,i in envals:
try:
while distr[r] < v:
r += 1
except IndexError: pass
p_arr[i] = 1 - r/ldistr
if p_arr[i] == 0:
p_arr[i] = 1/ldistr
return p_arr
def variance_shrinkage_t_test(values1, values2, params=(0.5, 0.9), permutN=100):
"""
values1, values2 = NxM matrices, where N=number of replicates, M=number of tests
params = (fraction from shrinkage, quantile to use for shrinkage) (default 0.5, 0.9)
permutN = as high as possible (but makes it take more time)
"""
import numpy, math
means1 = numpy.mean(values1, axis=1)
means2 = numpy.mean(values2, axis=1)
def new_var(values):
variance = numpy.var(values, axis=1)
c = pointinarray(variance, params[1])
return variance * (1-params[0]) + c * params[0], c
def new_var_perm(values, c):
variance = numpy.var(values, axis=1)
return variance * (1-params[0]) + c * params[0]
def t_like_values(val1, val2, combined_variance):
# ignore the factor 2/sqrt(2/n), since it's constant
return (numpy.mean(val1, axis=1)-numpy.mean(val2, axis=1))/combined_variance
var1, c1 = new_var(values1)
var2, c2 = new_var(values2)
t_like_real = t_like_values(values1, values2, var1+var2)
stackval = numpy.hstack((values1, values2))
n1 = len(values1[0])
nboth = len(stackval[0])
def permut_t():
i_p = numpy.random.permutation(nboth)
val1 = numpy.hstack(tuple(stackval[:,i:i+1] for i in i_p[:n1]))
val2 = numpy.hstack(tuple(stackval[:,i:i+1] for i in i_p[n1:]))
return t_like_values(val1, val2, new_var_perm(val1, c1) + new_var_perm(val2, c2))
t_like_distr = [t for i in range(permutN) for t in permut_t()]
return [1-2*abs(0.5-p) for p in p_from_distr(t_like_real, t_like_distr)]
def strip_end_zeros(number):
string = str(number)
while string.endswith('0'): string = string[:-1]
if string.endswith('.'): string = string[:-1]
return string
class Parsed_rpkms(dict):
def __init__(self, infiles, counts):
# contains the table of values and names as dictionary with 'symbols', 'IDs' or sample name a key
self.samples = []
self.filenames = infiles
self.allmappedreads = []
self.normalizationreads = []
self.is_counts = counts
self.symbol_to_index = dict()
self.ID_to_index = dict()
def writeexpr(filename, rpkm_expr, counts_expr=None, samples=None, row_indices=None, extra_comment_lines=[]):
import sys, time
if samples is None: samples = rpkm_expr.samples
if row_indices is None: row_indices = range(len(rpkm_expr['symbols']))
with open(filename, 'w') as outfh:
print(join('#samples', samples), file=outfh)
totalreadsD = dict(zip(rpkm_expr.samples, rpkm_expr.allmappedreads))
normreadsD = dict(zip(rpkm_expr.samples, rpkm_expr.normalizationreads))
print(join('#allmappedreads', [totalreadsD.get(s, 0) for s in samples]), file=outfh)
print(join('#normalizationreads', [normreadsD.get(s, 0) for s in samples]), file=outfh)
print(join('#arguments', ' '.join(sys.argv), 'time: '+time.asctime()), file=outfh)
for line in extra_comment_lines:
if not line[0] == '#': line = '#' + line
line = line.rstrip('\r\n')
print(line, file=outfh)
for i in row_indices:
symbol = rpkm_expr['symbols'][i]
ID = rpkm_expr['IDs'][i]
values_rpkm = (rpkm_expr[s][i] for s in samples)
if counts_expr is None:
print(join(symbol, ID, values_rpkm), file=outfh)
else:
values_reads = (counts_expr[s][i] for s in samples)
print(join(symbol, ID, values_rpkm, map(strip_end_zeros, values_reads)), file=outfh)
def loadexpr(infiles, counts=False):
"""
loads from output of rpkmforgenes.py
"""
if isinstance(infiles, str): infiles = [infiles]
values = Parsed_rpkms(infiles, counts)
numsymbols = None
for infile in infiles:
with open(infile, 'r') as infh:
for line in infh:
p = line.rstrip('\r\n').split('\t')
if p[0] == '#samples':
samples = p[1:]
values.update(dict((n,[]) for n in samples))
values['symbols'] = []
values['IDs'] = []
indexstart = 2+len(samples) if counts else 2
values.samples.extend(samples)
elif p[0] == '#allmappedreads':
values.allmappedreads.extend([float(v) for v in p[1:]])
elif p[0] == '#normalizationreads':
values.normalizationreads.extend([float(v) for v in p[1:]])
elif line.startswith('#'):
continue
else:
for s,v in zip(samples, p[indexstart:]):
try:
values[s].append(None if v == '-1' else float(v))
except:
import sys
#print('Problem line:', repr(line), file=sys.stderr)
raise
values['symbols'].append(p[0])
values['IDs'].append(p[1])
if not (numsymbols is None or numsymbols == len(values['symbols'])):
raise Exception('Mismatch in number of gene symbols between files')
numsymbols = len(values['symbols'])
# prepare some dictionaries
values.symbol_to_index = dict((s, i) for i, S in enumerate(values['symbols']) for s in S.split('+'))
values.symbol_to_index.update(dict((S, i) for i, S in enumerate(values['symbols'])))
values.ID_to_index = dict((s, i) for i, S in enumerate(values['IDs']) for s in S.split('+'))
values.ID_to_index.update(dict((S, i) for i, S in enumerate(values['IDs'])))
return values
def getsequence(chromosome, start, end, genomedir, filesuffix=".fa"):
""" returns nucleotide sequence string, for 0-based inclusive to exclusive interval """
import os
chromosomefile = os.path.join(genomedir, chromosome + filesuffix)
cfileh = open(chromosomefile, "r")
if start < 0: start = 0
global chromosomefile_infodict
try: chromosomefile_infodict
except: chromosomefile_infodict = {}
try: offset, linelength, seqlength = chromosomefile_infodict[chromosomefile]
except:
line1 = cfileh.readline(1000)
if len(line1) < 1000 and line1[0] == '>': offset = len(line1)
else:
cfileh.seek(0)
offset = 0
line2 = cfileh.readline(1000)
if len(line2) < 1000:
linelength = len(line2)
seqlength = len(line2.rstrip())
else:
linelength = 0
seqlength = 0
chromosomefile_infodict[chromosomefile] = offset, linelength, seqlength
if linelength == 0:
startfilepos = start + offset
endfilepos = end + offset
else:
startfilepos = offset + (start // seqlength)*linelength + (start % seqlength)
endfilepos = offset + (end // seqlength)*linelength + (end % seqlength)
cfileh.seek(startfilepos, 0)
seq = ''.join(cfileh.read(endfilepos-startfilepos).split())
cfileh.close()
return seq
def reverseDNA(seq_in):
""" returns nucleotide sequence string """
sequencetools_reverseDNAdict = {"A":"T", "C":"G", "G":"C", "T":"A", "R":"Y","Y":"R","K":"M","M":"K","S":"S","W":"W","B":"V","D":"H","H":"D","V":"B","N":"N", "a":"t","c":"g","g":"c","t":"a","n":"n","\n":"\n"}
seq_out = ""
for bi in range(len(seq_in)):
seq_out = sequencetools_reverseDNAdict[seq_in[bi]] + seq_out
return seq_out
def expandsequence(sequence):
return expandsequences([sequence])
def expandsequences(sequences):
""" returns array of sequences """
expanddict = {"A":"A", "C":"C", "G":"G", "T":"T", "R":"GA", "Y":"TC", "K":"GT", "M":"AC", "S":"GC", "W":"AT", "B":"GTC", "D":"GAT", "H":"ACT", "V":"GCA", "N":"ACGT"}
seq_out = []
for seqin in sequences:
seq_l = [""]
for bi in range(len(seqin)):
expanded = expanddict[seqin[bi]]
oldsequences = seq_l
seq_l = []
for ei in range(len(expanded)):
for seq in oldsequences:
seq_l.append(seq + expanded[ei])
seq_out += seq_l
return seq_out
def tocolour(seq):
""" returns colourspace sequence string """
plainseq = seq.upper()
colourdict = {"AA":"0", "CC":"0", "GG":"0", "TT":"0", "CA":"1", "AC":"1", "GT":"1", "TG":"1", "GA":"2", "AG":"2", "TC":"2", "CT":"2", "TA":"3", "AT":"3", "CG":"3", "GC":"3"}
colourseq = ""
for pos in range(len(plainseq)-1):
try:
colour = colourdict[plainseq[pos:pos+2]]
except:
colour = "."
colourseq += colour
return plainseq[0] + colourseq
def fromcolour(seq):
colour0 = {"A":"A", "C":"C", "G":"G", "T":"T"}
colour1 = {"A":"C", "C":"A", "G":"T", "T":"G"}
colour2 = {"G":"A", "A":"G", "T":"C", "C":"T"}
colour3 = {"T":"A", "A":"T", "C":"G", "G":"C"}
cs_sequence = seq
pos = 1
prevbase = cs_sequence[0]
seq = prevbase
while pos < len(cs_sequence):
colour = cs_sequence[pos]
if colour == "0":
nextbase = colour0[prevbase]
elif colour == "1":
nextbase = colour1[prevbase]
elif colour == "2":
nextbase = colour2[prevbase]
elif colour == "3":
nextbase = colour3[prevbase]
else:
seq += "N"
return seq
seq += nextbase
prevbase = nextbase
pos += 1
return seq
def loadlist(infile, index=None, func=None, ignore='#', ignorelines=0):
""" returns array of strings """
infileh = open(infile, "r")
for i in range(ignorelines):
infileh.readline()
outarray = [l.rstrip() for l in infileh.readlines()]
infileh.close()
if ignore is not None:
outarray = [l for l in outarray if not l.startswith(ignore)]
if index is not None:
outarray = [l.split("\t")[index] for l in outarray]
if func is not None:
outarray = list(map(func, outarray))
return outarray
def printlist(outfile, inlist, method="w"):
outfileh = open(outfile, method)
for string in inlist:
print(string, file=outfileh)
outfileh.close()
def histogramheights(array, start, end, step, cumulative=0, fractions=False):
""" returns 2 arrays: x and y """
binpositions = []
binheights = []
pos = start
arraylen = 0
while pos <= end:
binpositions.append(pos)
binheights.append(0)
pos += step
for element in array:
bin = int((element-start)/step)
arraylen += 1
if cumulative > 0:
for bi in range(bin, len(binheights)):
try:
assert bi >= 0
binheights[bi] += 1
except: pass
elif cumulative < 0:
for bi in range(0, bin+1):
try:
assert bi >= 0
binheights[bi] += 1
except: pass
else:
try:
assert bin >= 0
binheights[bin] += 1
except: pass
if fractions:
return (binpositions, [h/arraylen for h in binheights])
else:
return (binpositions, binheights)
def bin(array, start, end, step, cumulative=0, fractions=False):
return histogramheights(array, start, end, step, cumulative, fractions)
def mixcolours(colours, weights):
cout = "#"
for si in [1,3,5]: # red, green, blue
cvals = [int(c[si:si+2], 16) for c in colours]
mixed = max(0,min(255,int(0.5+sum([cvals[i]*weights[i] for i in range(len(cvals))]))))
outstr = "%X" % mixed
if len(outstr) == 1: outstr = "0" + outstr
cout += outstr
return cout
def rainbowmix(fraction, stops=['#fe0000', '#00fe00', '#0000fe', '#000000', 'f0f0f0', '#fe0000', '#0000fe', '#f0f0f0', '#00fe00', '#000000']):
n = len(stops)
mf = 1-(fraction*n)%1
lstop = int(fraction*n)
return mixcolours([stops[lstop%n], stops[(lstop+1)%n]], [mf, 1-mf])
def randomcolour():
import random
def hexconv(n):
r = hex(n)[2:]
return r if len(r) == 2 else '0'+r
return '#' + ''.join([hexconv(random.randint(0,255)) for c in 'rgb'])
def chisquare(observed, total):
""" returns fold enrichment, p-value """
from scipy import stats
import numpy
expected = [float(v)*sum(observed)/sum(total) for v in total]
obs = numpy.asarray(observed)
obs = obs.astype(float)
exp = numpy.asarray(expected)
exp = exp.astype(float)
fc = [observed[ii]/expected[ii] if expected[ii] != 0 else 0.0 for ii in range(len(observed))]
return fc, stats.chisquare(obs, exp)[1]
def chisquaretable(a, b, c, d):
fc, p = chisquare([a,b], [c+a,d+b])
return fc[0], p
def permutationtest(func, a, b, controls=1000):
""" returns 2-sided p-value for func(a) = func(b) """
import random
arr = [0 for i in range(controls+1)]
arr[0] = abs(func(a) - func(b))
c = a + b
lena = len(a)
for i in range(1, controls+1):
random.shuffle(c)
arr[i] = abs(func(c[:lena]) - func(c[lena:]))
r = rank(arr)
return 1-float(r[0])/(controls+1)
def pointinarray(array, quantile):
#sortedarray = array[:]
#sortedarray.sort()
import numpy
sortedarray = numpy.array(sorted(array))
def _point(q):
indexlow = int(q*(len(sortedarray)-1))
fl = q*(len(sortedarray)-1)-indexlow
if indexlow == len(sortedarray) - 1:
return float(array[indexlow])
else:
return float(sortedarray[indexlow]*(1-fl)+sortedarray[indexlow+1]*fl)
if isinstance(quantile, list):
return list(map(_point, quantile))
else:
return _point(quantile)
def permutationtest_confint(func, a, b, confidence=0.95, controls=1000):
""" returns func(a)-func(b), min, max, assumes equal distribution except func (eg mean) """
import random
pvalue = confidence
if pvalue > 1: pvalue /= 100.0
if pvalue > 0.5: pvalue = 1-pvalue
arr = [0 for i in range(controls)]
arr_0 = func(a) - func(b)
c = a + b
lena = len(a)
for i in range(controls):
random.shuffle(c)
arr[i] = func(c[:lena]) - func(c[lena:])
return arr_0+pointinarray(arr,pvalue/2.0), arr_0, arr_0+pointinarray(arr,1-pvalue/2.0)
def adjWald(a, b, confidence=0.95):
""" calculate confidence interval for a/b, where a and b are integers """
# http://measuringux.com/AdjustedWald.htm
n = float(b)
p = a/n
z2 = PtoZ((1+confidence)/2)**2
padj = (n*p + z2/2)/(n+z2)
nadj = n + z2
d = (z2*padj*(1-padj)/nadj)**0.5
return padj-d, padj+d
def bootstrap_confint(func, a, b=None, confidence=0.95, resamplings=1000):
""" returns min, max; dose not assume similar distribution, requires >20 values in a and b """
import random
pvalue = confidence
if pvalue > 1: pvalue /= 100.0
if pvalue > 0.5: pvalue = 1-pvalue
arr = []
if b is None:
for i in range(resamplings):
rs_a = [random.choice(a) for j in range(len(a))]
arr.append(func(rs_a))
else:
for i in range(resamplings):
rs_a = [random.choice(a) for j in range(len(a))]
rs_b = [random.choice(b) for j in range(len(b))]
arr.append(func(rs_a)-func(rs_b))
return pointinarray(arr,pvalue/2.0), pointinarray(arr,1-pvalue/2.0)
def violin_plot(ax,data,pos, bp=False):
'''
create violin plots on an axis
run with e.g violin_plot(pylab.axes(), [[3,4,5],[7,8]], [0, 1])
'''
# from http://pyinsci.blogspot.com/2009/09/violin-plot-with-matplotlib.html
from matplotlib.patches import Rectangle
from scipy.stats import gaussian_kde
from numpy.random import normal
from numpy import arange
dist = max(pos)-min(pos)
w = min(0.15*max(dist,1.0),0.5)
for d,p in zip(data,pos):
k = gaussian_kde(d) #calculates the kernel density
m = k.dataset.min() #lower bound of violin
M = k.dataset.max() #upper bound of violin
x = arange(m,M,(M-m)/500.) # support for violin
v = k.evaluate(x) #violin profile (density curve)
v = v/v.max()*w #scaling the violin to the available space
ax.fill_betweenx(x,p,v+p,facecolor='y',alpha=0.3)
ax.fill_betweenx(x,p,-v+p,facecolor='y',alpha=0.3)
if bp:
#ax.boxplot(data,notch=1,positions=pos,vert=1)
boxplotborders = [pointinarray(D, [0.25,0.5,0.75]) for D in data]
for x, borders in zip(pos, boxplotborders):
ax.add_patch(Rectangle((x-0.05, borders[0]), 0.1, borders[2]-borders[0], linewidth=0, facecolor='k'))
ax.plot(pos, [d[1] for d in boxplotborders], 'wo')
def GOgenelist(GO_file, term, shortened=0):
files = {"BP":"/home/danielr/ChIP-seq-Sox3/perGOcat/data/BP_goterm.txt","MF":"/home/danielr/ChIP-seq-Sox3/perGOcat/data/MF_goterm.txt", "CC":"/home/danielr/ChIP-seq-Sox3/perGOcat/data/CC_goterm.txt"}
try: GO_file = files[GO_file]
except: pass
foundcat = 0
GO_fileh = open(GO_file, "r")
for line in GO_fileh:
p = line[:-1].split("\t")
if p[0] == term or (shortened and term.upper().replace(" ","_") in p[0].upper().replace(" ","_")):
GO_fileh.close()
return p[1].split(";")
GO_fileh.close()
raise UserWarning("Did not find term " + term + " in " + GO_file)
def loadmotif(infile, trimstart=0, trimend=0):
from TAMO import MotifTools
lines = loadlist(infile)
if lines[0] == "A\tC\tG\tT":
ma = []
for l in lines[1:]:
p = l.split("\t")
ma.append({'A':float(p[0]), 'C':float(p[1]), 'G':float(p[2]), 'T':float(p[3])})
if trimend == 0: ma = ma[trimstart:]
else: ma = ma[trimstart:-trimend]
return MotifTools.Motif_from_counts(ma)
elif lines[0][0] in 'ACGT':
if trimend == 0: lines = lines[trimstart:]
else: lines = lines[trimstart:-trimend]
return MotifTools.Motif(lines)
else:
na = []
for line in lines:
na.append(list(map(int, line.split())))
ma = []
for i in range(len(na[0])):
ma.append({'A':na[0][i], 'C':na[1][i], 'G':na[2][i], 'T':na[3][i]})
return MotifTools.Motif_from_counts(ma)
def join(*args, **kwargs):
""" returns tab-separated string """
try: sep = kwargs["sep"]
except: sep = "\t"
array = []
for a in args:
if hasattr(a, '__iter__') and not (isinstance(a, str) or isinstance(a, unicode)): array.extend(a)
else: array.append(a)
return sep.join(map(str, array))
def split(line, sep='\t'):
return line.rstrip('\r\n').split(sep)
def splitlines(infile, ignore='', sep='\t'):
if infile.endswith('.gz'):
import gzip
infh = gzip.open(infile, 'r')
else:
infh = open(infile, 'rU')
try:
for line in infh:
if ignore and line.startswith(ignore): continue
yield line.rstrip('\r\n').split(sep)
finally:
infh.close()
class Cregion:
allchromosomes = {}
indexdict = {} # inverse of allchromosomes
allwindows = []
WL = 3000
def __init__(self, chromosome, start, end=None, strand='?'):
self.start = start
if end == None: self.end = start
else: self.end = end
try: self.chrindex = Cregion.allchromosomes[chromosome+strand]
except KeyError:
self.chrindex = len(Cregion.allchromosomes)
Cregion.allchromosomes[chromosome+strand] = self.chrindex
Cregion.indexdict[self.chrindex] = chromosome+strand
Cregion.allwindows.append([])
def addtowindows(self):
# adds instance to Cregion.allwindows
wchr = Cregion.allwindows[self.chrindex]
if len(wchr) <= self.end//Cregion.WL: wchr.extend([[] for i in range(1+self.end//Cregion.WL-len(wchr))])
for wi in range(self.start//Cregion.WL, self.end//Cregion.WL+1):
wchr[wi].append(self)
def getwindow(self):
# returns list of Cregion instances which could overlap
wchr = Cregion.allwindows[self.chrindex]
s = min(len(wchr), self.start//Cregion.WL)
e = min(len(wchr), self.end//Cregion.WL+1)
return list(set([v for l in wchr[s:e] for v in l])) # flattens wchr[s:e], removes duplicates
def overlaps(self, other):
return self.start <= other.start < self.end or other.start <= self.start < other.end
def overlapping(self):
return [r for r in self.getwindow() if r.overlaps(self)]
def getchromosome(self):
return Cregion.indexdict[self.chrindex][:-1]
def startingwithin(self):
# returns list of Cregion instances whose start coordinate is within the region
return [r for r in self.getwindow() if self.start <= r.start < self.end]
def getstrand(self):
strand = Cregion.indexdict[self.chrindex][-1]
if strand == "?": raise Exception("No strand given")
return strand
def __repr__(self):
return self.name(1, 0)
def name(self, start_add=0, end_add=0):
try:
strand = self.getstrand()
except:
return self.getchromosome()+":"+str(self.start+start_add)+"-"+str(self.end+end_add)
else:
return self.getchromosome()+":"+str(self.start+start_add)+"-"+str(self.end+end_add)+":"+strand
@staticmethod
def clearwindows(new_windowsize=None):
if new_windowsize is not None: Cregion.WL = new_windowsize
Cregion.allwindows = [[] for c in Cregion.allchromosomes]
@staticmethod
def overlappingpoint(chromosome, pos, strand='?'):
try:
wchr = Cregion.allwindows[Cregion.allchromosomes[chromosome+strand]]
except KeyError:
return []
s = pos//Cregion.WL
try:
return [r for r in wchr[s] if r.start <= pos < r.end]
except IndexError:
return []
@staticmethod
def closesttopoint(chromosome, pos, strand='?', mindist=0, maxdist=1e30, check_forward=True, check_backward=True):
try:
wchr = Cregion.allwindows[Cregion.allchromosomes[chromosome+strand]]
except KeyError:
return []
s = pos//Cregion.WL
windist = 0
candidates = set()
def closesttopoint_distance(r):
if r.start <= pos <= r.end: return 0
return min(abs(r.start-pos), abs(r.end-pos))
while windist < 5+maxdist/Cregion.WL:
new_candidates = set()
if check_backward:
try: new_candidates |= set(r for r in wchr[s-windist])
except IndexError:pass
if check_forward:
try: new_candidates |= set(r for r in wchr[s+windist])
except IndexError:pass
new_candidates = set(r for r in new_candidates if mindist <= closesttopoint_distance(r) < maxdist)
if candidates:
candidates |= new_candidates
break
candidates |= new_candidates
windist += 1
if not candidates: return []
closest_dist = min(closesttopoint_distance(r) for r in candidates)
return [r for r in candidates if closesttopoint_distance(r) == closest_dist]
def flag(flags, default=None, array=None):
if array == None:
import sys
argv = sys.argv
else: argv = array
if "--help" in argv: raise UserWarning("--help in arguments")
for f in str(flags).split("/"):
if f[0] != "-":
try: return flagpos(int(f), None, argv)
except: pass
try:
index = argv.index(f)
except ValueError: continue
try:
return argv[index+1]
except IndexError: raise UserWarning("No value after " + f + " in arguments")
if default == None: raise UserWarning(str(flags) + " not in arguments")
return default
def flagarray(flags, default=None, array=None):
if array == None:
import sys
argv = sys.argv
else: argv = array
if "--help" in argv: raise UserWarning("--help in arguments")
index = None
for f in str(flags).split("/"):
if f[0] != "-":
v = []
i = 0
try:
while 1:
v.append(flagpos(int(f)+i, None, argv))
i += 1
except: pass
if len(v) > 0: return v
try:
index = argv.index(f)
except ValueError: continue
if index == None:
if default == None: raise UserWarning(str(flags) + " not in arguments")
return default
nextflag = index+1
while nextflag < len(argv):
if argv[nextflag][0] == "-" and len(argv[nextflag]) > 1 and argv[nextflag][1] not in "0123456789.": break
nextflag += 1
return argv[index+1:nextflag]
def ifflag(flags, present=1, absent=0, array=None):
if array == None:
import sys
argv = sys.argv
else: argv = array
if "--help" in argv: raise UserWarning("--help in arguments")
for f in str(flags).split("/"):
if f in argv: return present
return absent
def flagpos(index, default=None, array=None):
if array == None:
import sys
argv = sys.argv
else: argv = array
if "--help" in argv: raise UserWarning("--help in arguments")
try:
value = argv[index]
for v in argv[1:index+1]:
if len(v) > 1 and v[0] == "-" and v[1] not in "0123456789.": raise IndexError
except:
if default == None:
raise UserWarning("Argument " + str(index) + " is missing")
else: return default
return value