-
Notifications
You must be signed in to change notification settings - Fork 2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
关于训练细节的一些问题 #3
Comments
您好,感谢关注。
|
您好,非常感谢您回答我的问题。关于第二个问题,我可能没有表达清楚,请允许我再请教一下。 1、U-NET网络输出的是一个通道的dose map,然后和9个beam mask组成的beam masks相乘得到Predicted Beam Voters,进而和Ground-Truth Beam Voters来构建损失函数Lm?还是输出的是九个通道的dose map,然后和9个beam mask组成的beam masks相乘得到Predicted Beam Voters,进而和Ground-Truth Beam Voters来构建损失函数Lm? 再次感谢您! |
|
您好,非常抱歉再次打扰您,我有一些训练细节方面的问题想请教您: |
|
您好,我还想请教几个问题: |
|
您好,我目前正在复现您的这篇文章,因此我还想请教一些细节: |
|
您好,非常荣幸能够拜读您的文章,我有一些问题不是很明白,希望您能够解答一下:
1、第一个Global Dose Network是否有损失函数(例如MAE损失)进行监督?
2、第二个Beam-wise Dose Network的U-NET网络中输入和输出分别是几通道的,具体包含了哪些部分?
3、Lm和总损失函数L的比例是多少?
非常感谢您!
The text was updated successfully, but these errors were encountered: