-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfuglede.tex
241 lines (192 loc) · 7.95 KB
/
fuglede.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
\documentclass[12pt]{article}
%----------Packages----------
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
%\usepackage{amsrefs}
\usepackage{dsfont}
\usepackage{mathrsfs}
\usepackage{stmaryrd}
\usepackage[all]{xy}
\usepackage[mathcal]{eucal}
\usepackage{verbatim} %%includes comment environment
\usepackage{fullpage} %%smaller margins
\usepackage{hyperref}
\usepackage{graphicx}
\usepackage{multicol}
\usepackage{enumitem}
\usepackage{accents}
%----------Commands----------
\newcommand{\ubar}[1]{\underaccent{\bar}{#1}}
%%penalizes orphans
\clubpenalty=9999
\widowpenalty=9999
%% bold math capitals
\newcommand{\bA}{\mathbf{A}}
\newcommand{\bB}{\mathbf{B}}
\newcommand{\bC}{\mathbf{C}}
\newcommand{\bD}{\mathbf{D}}
\newcommand{\bE}{\mathbf{E}}
\newcommand{\bF}{\mathbf{F}}
\newcommand{\bG}{\mathbf{G}}
\newcommand{\bH}{\mathbf{H}}
\newcommand{\bI}{\mathbf{I}}
\newcommand{\bJ}{\mathbf{J}}
\newcommand{\bK}{\mathbf{K}}
\newcommand{\bL}{\mathbf{L}}
\newcommand{\bM}{\mathbf{M}}
\newcommand{\bN}{\mathbf{N}}
\newcommand{\bO}{\mathbf{O}}
\newcommand{\bP}{\mathbf{P}}
\newcommand{\bQ}{\mathbf{Q}}
\newcommand{\bR}{\mathbf{R}}
\newcommand{\bS}{\mathbf{S}}
\newcommand{\bT}{\mathbf{T}}
\newcommand{\bU}{\mathbf{U}}
\newcommand{\bV}{\mathbf{V}}
\newcommand{\bW}{\mathbf{W}}
\newcommand{\bX}{\mathbf{X}}
\newcommand{\bY}{\mathbf{Y}}
\newcommand{\bZ}{\mathbf{Z}}
%% blackboard bold math capitals
\newcommand{\bbA}{\mathbb{A}}
\newcommand{\bbB}{\mathbb{B}}
\newcommand{\bbC}{\mathbb{C}}
\newcommand{\bbD}{\mathbb{D}}
\newcommand{\bbE}{\mathbb{E}}
\newcommand{\bbF}{\mathbb{F}}
\newcommand{\bbG}{\mathbb{G}}
\newcommand{\bbH}{\mathbb{H}}
\newcommand{\bbI}{\mathbb{I}}
\newcommand{\bbJ}{\mathbb{J}}
\newcommand{\bbK}{\mathbb{K}}
\newcommand{\bbL}{\mathbb{L}}
\newcommand{\bbM}{\mathbb{M}}
\newcommand{\bbN}{\mathbb{N}}
\newcommand{\bbO}{\mathbb{O}}
\newcommand{\bbP}{\mathbb{P}}
\newcommand{\bbQ}{\mathbb{Q}}
\newcommand{\bbR}{\mathbb{R}}
\newcommand{\bbS}{\mathbb{S}}
\newcommand{\bbT}{\mathbb{T}}
\newcommand{\bbU}{\mathbb{U}}
\newcommand{\bbV}{\mathbb{V}}
\newcommand{\bbW}{\mathbb{W}}
\newcommand{\bbX}{\mathbb{X}}
\newcommand{\bbY}{\mathbb{Y}}
\newcommand{\bbZ}{\mathbb{Z}}
%% script math capitals
\newcommand{\sA}{\mathscr{A}}
\newcommand{\sB}{\mathscr{B}}
\newcommand{\sC}{\mathscr{C}}
\newcommand{\sD}{\mathscr{D}}
\newcommand{\sE}{\mathscr{E}}
\newcommand{\sF}{\mathscr{F}}
\newcommand{\sG}{\mathscr{G}}
\newcommand{\sH}{\mathscr{H}}
\newcommand{\sI}{\mathscr{I}}
\newcommand{\sJ}{\mathscr{J}}
\newcommand{\sK}{\mathscr{K}}
\newcommand{\sL}{\mathscr{L}}
\newcommand{\sM}{\mathscr{M}}
\newcommand{\sN}{\mathscr{N}}
\newcommand{\sO}{\mathscr{O}}
\newcommand{\sP}{\mathscr{P}}
\newcommand{\sQ}{\mathscr{Q}}
\newcommand{\sR}{\mathscr{R}}
\newcommand{\sS}{\mathscr{S}}
\newcommand{\sT}{\mathscr{T}}
\newcommand{\sU}{\mathscr{U}}
\newcommand{\sV}{\mathscr{V}}
\newcommand{\sW}{\mathscr{W}}
\newcommand{\sX}{\mathscr{X}}
\newcommand{\sY}{\mathscr{Y}}
\newcommand{\sZ}{\mathscr{Z}}
\newcommand{\closure}[2][3]{%
{}\mkern#1mu\overline{\mkern-#1mu#2}}
%\renewcommand{\emptyset}{\O}
\renewcommand{\phi}{\varphi}
% for boldface vectors
\renewcommand{\vec}{\mathbf}
\newcommand{\ds}{\displaystyle}
\newcommand{\diam}{\operatorname{diam}}
\providecommand{\abs}[1]{\lvert #1 \rvert}
\providecommand{\norm}[1]{\lVert #1 \rVert}
\providecommand{\x}{\times}
\providecommand{\ar}{\rightarrow}
\providecommand{\arr}{\longrightarrow}
%----------Theorems----------
\newtheorem{theorem}{Theorem}[section]
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Corollary}
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{nondefinition}[theorem]{Non-Definition}
\newtheorem{exercise}[theorem]{Exercise}
\newtheorem{example}[theorem]{Example}
\numberwithin{equation}{subsection}
%--------Lecture number
\newcommand{\lecno}{20}
%----------Title-------------
\title{Fuglede Conjecture in $\bbZ_P^2$}
% \author{Drew C Youngren}
\begin{document}
\pagestyle{plain}
%%--- sheet number for theorem counter
%\setcounter{section}{1}
\maketitle
\begin{definition}
A set $E\subset{\bbR^d}$ is \emph{spectral} if there exists a set $A\in \bbR^d$ such that $\{\chi(a\cdot x)\}_{a\in A}$ is a basis of $L^2(E)$.
\end{definition}
\begin{definition}
A set $E\in \bbR^d$ tiles $\bbR^d$ if there exists a set $T\in \bbR^d$ such that \[
\sum_{\tau \in T} 1_E(x-\tau) \equiv 1.
\]
\end{definition}
\begin{lemma}[Magic]\label{magic}
Let $E\subset \bbZ_p^2$ and $m\neq (0,0)$. Then if $\hat{1_E}(m)=0$,
\begin{enumerate}[label=(\roman*)]
\item $\hat{1_E}(r m) =0$ for all $r\in \bbZ_p$, and
\item\label{magic2} $E$ is equi-distributed along lines perpendicular to $m$.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $\zeta = e^{-2\pi i/p}$. We have
\begin{align*}
\hat{1_E}(m) &= \sum_{x\in \bbZ_p^2} \chi(-x\cdot m)1_E(x) \\
\ &= \sum_{t\in \bbZ_p}\sum_{x\cdot m = t} \chi(-x\cdot m)1_E(x) \\
\ &= \sum_{t\in \bbZ_p}\chi(-t)n(t) \\
\ &= \sum_{t\in \bbZ_p}\zeta^t n(t) =0
\end{align*} where $n(t) = |E \cap \{x \in \bbZ_p^2 : x\cdot m = t\}| $. Since $\zeta$ is a $p$th root of unity, its minimal characteristic polynomial is $\sum_{n=0}^{p-1} x^n $, the the coefficients $n(t)$ above are independent of $t$, giving \ref{magic2}.
Further, let $r\in \bbZ_p^*$.
\begin{align*}
\hat{1_E}(r m) &= \sum_{x\in \bbZ_p^2} \chi(- r x\cdot m)1_E(x) \\
\ &= \sum_{t\in \bbZ_p}\sum_{x\cdot m = t/r} \chi(-x\cdot (r m)1_E(x) \\
\ &= \sum_{t\in \bbZ_p}\chi(-t)n(t/r) \\
\ &= \sum_{t\in \bbZ_p}\zeta^t n(t/r) =0
\end{align*} because $n(t/r)$ is constant.
\end{proof}
\begin{theorem}
Suppose $p$ is prime and $p\equiv 3 \mod 4$. Then a set $E\in \bbZ_p^2$ is spectral if and only if it tiles $\bbZ_p^2$.
\end{theorem}
\begin{proof}
Suppose $E$ has spectrum $A$. If $|A|=1$, $E$ is a single point and the result is trivial. Else, take $a,a'\in A, a-a'\neq \vec{0}$. Then,
\begin{align*}
\hat{1_E}(a-a') &=p^{-2} \sum_{x\in\bbZ_p^2} \chi((a'-a)\cdot x)1_E(x) \\
\ &= &=p^{-2} \sum_{x\in E} \chi(a'\cdot x) \chi(-a\cdot x) = 0
\end{align*} by orthogonality of the basis.
Let $m=a-a'$ and so $\hat{1_E}(m)=0$ and Lemma \ref{magic} applies. Thus, $|E| = |A| = k p $.
If $k>1$, then $|A| >p$ and thus contains every direction. By the above (and Lemma \ref{magic} again), thus implies $\hat{1_E}(m) = 0$ for all nonzero $m$, but then
\[1_E(x) = \sum_m \chi(x\cdot m)\hat{1_E}(m) = \hat{1_E}(\vec 0)\] which is a constant and thus can only be 1, so $E=\bbZ_p^2$ and thus trivially tiles the whole space.
Thus, the only interesting case is $k=1$, which means $n(t) = 1$ from the proof of Lemma \ref{magic}. That is, $E$ has exactly one point on each line orthogonal to $m$, or the map
\[\ell_m : x\mapsto m\cdot x \] is a bijection $E\to \bbZ_p$. We can then index the elements of $E$ by \[\ell_m(e_t) = t. \]
Choose nonzero $m'$ such that $m\cdot m'=0$. Let $T = \{ t m':t\in\bbZ_p \}$. For all $x\in\bbZ_p^2$, $x-e_j \in T$ if and only if $j=x\cdot m$. Thus $T$ is a tiling set for $E$.
Now, suppose $E$ has tiling set $T$.
\[1\equiv \sum_{\tau\in T} 1_E(x-\tau) = \sum_{x \in \bbZ_p^2} 1_E(x-\tau)1_T(\tau) = 1_E * 1_T \]
Taking the Fourier transform of both sides, we see
\[\hat{1}(m) = \hat{1_E}(m) \hat{1_T}(m) \] which must be $0$ for all $m\neq\vec 0$. The only interesting cases are $1 < |T| < p^2$ so there must be some $m\neq\vec 0$ such that $\hat{1_T}(m)\neq 0$, and thus $\hat{1_E}(m) = 0$.
Lemma \ref{magic} once again applies, and so as above $|E|=p$, and $E$ has a unique element on each line orthogonal to $m$. Let $A = \{t m:t\in\bbZ_p\}$. To see this is a spectrum for $E$, we need only show it's an orthogonal set. Indeed, $t,s\in Z_p, t\neq s$.
\[\sum_{x\in E} \chi(t m\cdot x) \chi(-s\cdot m) = \hat{1_E}((t-s)m) \] which is 0 by the lemma.
\end{proof}
\end{document}