-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathtrain.py
89 lines (76 loc) · 3.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import shutup
shutup.please()
import os
import argparse
from datetime import datetime
from omegaconf import OmegaConf
import pytorch_lightning as pl
from pytorch_lightning.plugins import DDPPlugin
from data.megadepth_datamodule import MegaDepthPairsDataModule
from models.matching_module import MatchingTrainingModule
from utils.train_utils import get_training_loggers, get_training_callbacks, prepare_logging_directory
def main():
parser = argparse.ArgumentParser(description='Processing configuration for training')
parser.add_argument('--config', type=str, help='path to config file', default='config/config.yaml')
parser.add_argument('--features_config', type=str, help='path to config file with features', default='config/features_online/sift.yaml')
args = parser.parse_args()
# Load config
config = OmegaConf.load('config/config.yaml') # base config
feature_extractor_config = OmegaConf.load(args.features_config)
if args.config != 'config/config.yaml':
add_conf = OmegaConf.load(args.config)
config = OmegaConf.merge(config, add_conf)
pl.seed_everything(int(os.environ.get('LOCAL_RANK', 0)))
# Prepare directory for logs and checkpoints
if os.environ.get('LOCAL_RANK', 0) == 0:
experiment_name = '{}__attn_{}__laf_{}__{}'.format(
feature_extractor_config['name'],
config['superglue']['attention_gnn']['attention'],
config['superglue']['laf_to_sideinfo_method'],
str(datetime.now().strftime("%Y-%m-%d-%H-%M-%S"))
)
log_path = prepare_logging_directory(config, experiment_name, features_config=feature_extractor_config)
else:
experiment_name, log_path = '', ''
# Init Lightning Data Module
data_config = config['data']
dm = MegaDepthPairsDataModule(
root_path=data_config['root_path'],
train_list_path=data_config['train_list_path'],
val_list_path=data_config['val_list_path'],
test_list_path=data_config['test_list_path'],
batch_size=data_config['batch_size_per_gpu'],
num_workers=data_config['dataloader_workers_per_gpu'],
target_size=data_config['target_size'],
val_max_pairs_per_scene=data_config['val_max_pairs_per_scene'],
train_pairs_overlap=data_config.get('train_pairs_overlap')
)
# Init model
model = MatchingTrainingModule(
train_config={**config['train'], **config['inference'], **config['evaluation']},
features_config=feature_extractor_config,
superglue_config=config['superglue'],
)
# Set callbacks and loggers
callbacks = get_training_callbacks(config, log_path, experiment_name)
loggers = get_training_loggers(config, log_path, experiment_name)
# Init distributed trainer
trainer = pl.Trainer(
gpus=config['gpus'],
max_epochs=config['train']['epochs'],
accelerator="ddp",
gradient_clip_val=config['train']['grad_clip'],
log_every_n_steps=config['logging']['train_logs_steps'],
limit_train_batches=config['train']['steps_per_epoch'],
num_sanity_val_steps=0,
callbacks=callbacks,
logger=loggers,
plugins=DDPPlugin(find_unused_parameters=False),
precision=config['train'].get('precision', 32),
)
# If loaded from checkpoint - validate
if config.get('checkpoint') is not None:
trainer.validate(model, datamodule=dm, ckpt_path=config.get('checkpoint'))
trainer.fit(model, datamodule=dm, ckpt_path=config.get('checkpoint'))
if __name__ == '__main__':
main()