-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface-detector-pi.py
50 lines (39 loc) · 1.35 KB
/
face-detector-pi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import cv2
import sys
import time
# The classifier file can be downloaded from https://github.com/opencv/opencv/tree/master/data/haarcascades
cascPath = "haarcascade_frontalface_alt.xml"
faceCascade = cv2.CascadeClassifier(cascPath)
video_capture = cv2.VideoCapture(0)
i=0
while True:
# Capture frame-by-frame
ret, frame = video_capture.read()
scale_percent = 50 # percent of original size
width = int(frame.shape[1] * scale_percent / 100)
height = int(frame.shape[0] * scale_percent / 100)
dim = (width, height)
# Resize image
frame = cv2.resize(frame, dim, interpolation = cv2.INTER_AREA)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30),
flags = cv2.CASCADE_SCALE_IMAGE
)
for (x, y, w, h) in faces:
# Draw a rectangle around the faces
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Select the region of interest
roi = frame[y:y+h, x:x+w].copy()
cv2.imwrite('{}.jpg'.format(i), roi)
# Display the resulting frame
cv2.imshow('Video', frame)
i += 1
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()