forked from SaharCarmel/Memristor-NN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_utils.py
146 lines (114 loc) · 5.57 KB
/
nn_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import yaml
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt
class Args():
def __init__(self, yamlfile):
self.batch_size = self.load_param(yamlfile,"batch_size")
self.test_batch_size = self.load_param(yamlfile,"test_batch_size")
self.epochs = self.load_param(yamlfile,"epochs")
self.lr = self.load_param(yamlfile,"lr")
self.momentum = self.load_param(yamlfile,"momentum")
self.noCude = self.load_param(yamlfile, "noCuda")
self.seed = self.load_param(yamlfile,"seed")
self.log_interval = self.load_param(yamlfile,"log_interval")
self.save_model = self.load_param(yamlfile,"save_model")
self.dg_bins = self.load_param(yamlfile,"dg_bins")
self.dg_values = self.load_param(yamlfile,"dg_values")
def load_param(self,yamlfile,parm_name):
with open(yamlfile) as f:
data = yaml.load(f, Loader=yaml.FullLoader)
return data[parm_name]
pass
def __repr__(self):
print("Batch size: " + str(self.batch_size))
print("Test batch size: " + str(self.test_batch_size))
print("Epochs: " + str(self.epochs))
print("Learning rate: " + str(self.lr))
print("Momentum: " + str(self.momentum))
print("No cude: " + str(self.noCude))
print("Log interval: " + str(self.log_interval))
print("Save model? " + str(self.save_model))
print("dg_bins " + str(self.dg_bins))
print("dg_values " + str(self.dg_values))
return ''
def train(args, model, device, train_loader, test_loader , test_iterator, criterion ,epoch , _run):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
output = model(data)
loss=criterion(output,target)
model.zero_grad()
loss.backward()
model.update_weights()
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
model.eval()
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct = pred.eq(target.view_as(pred)).sum().item()
_run.log_scalar("Train Loss",loss.item())
_run.log_scalar("Train Accuracy",correct)
with torch.no_grad():
try:
data, target = test_iterator.next()
except:
test_iterator = iter(test_loader)
data, target = test_iterator.next()
data, target = data.to(device), target.to(device)
output = model(data)
test_loss = criterion(output, target).item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct = pred.eq(target.view_as(pred)).sum().item()
_run.log_scalar("Test Loss",test_loss)
_run.log_scalar("Test Accuracy (run)",correct)
def test(args, model, device, test_loader,criterion, _run):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
_run.log_scalar("Test Accuracy",100. * correct / len(test_loader.dataset))
def digitize_input(data_loader,args):
d = np.digitize(data_loader.dataset.data.numpy(),args.dg_bins)
for i in range(1,len(args.dg_bins)):
data_loader.dataset.data[torch.Tensor((d==i).astype(int)).type(torch.ByteTensor)] = args.dg_values[i-1]
def visualize_digitization(args):
use_cuda = not args.noCude and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True, **kwargs)
plt.figure()
plt.subplot(1,2,1)
plt.hist(train_loader.dataset.data.numpy().reshape(-1))
plt.title('DataSet Histogram')
d = np.digitize(train_loader.dataset.data.numpy(),args.dg_bins)
for i in range(1,len(args.dg_bins)):
train_loader.dataset.data[torch.Tensor((d==i).astype(int)).type(torch.ByteTensor)] = args.dg_values[i-1]
plt.subplot(1,2,2)
plt.hist(train_loader.dataset.data.numpy().reshape(-1))
plt.title('Digitized DataSet Histogram')
plt.show()