-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodels.py
175 lines (134 loc) · 5.12 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch
import numpy as np
import torch.nn as nn
from torch.autograd import Variable
from torchvision import models
from utils import cosine_similarity
class VGG16(nn.Module):
def __init__(self, pretrained=True):
super(VGG16, self).__init__()
model = models.vgg16(pretrained=pretrained)
self.features = model.features
layers = list(model.classifier.children())[:-1]
self.classifier = nn.Sequential(*layers)
def forward(self, x):
# from 224x224 to 4096
x = self.features(x)
x = self.classifier(x.view(x.size(0), -1))
return x
class VGG19(nn.Module):
def __init__(self, pretrained=True):
super(VGG19, self).__init__()
model = models.vgg19(pretrained=pretrained)
self.features = model.features
layers = list(model.classifier.children())[:-1]
self.classifier = nn.Sequential(*layers)
def forward(self, x):
# from 224x224 to 4096
x = self.features(x)
x = self.classifier(x.view(x.size(0), -1))
return x
class ResNet50(nn.Module):
def __init__(self, pretrained=True):
super(ResNet50, self).__init__()
model = models.resnet50(pretrained=pretrained)
layers = list(model.children())[:-1]
self.model = nn.Sequential(*layers)
def forward(self, x):
# from 224x224 to 2048
x = self.model(x)
return x.view(x.size(0), -1)
def logits(self, x):
return self.last_layer(x)
class SEResNet50(nn.Module):
def __init__(self, pretrained=True):
super(SEResNet50, self).__init__()
import pretrainedmodels
if pretrained:
model = pretrainedmodels.se_resnet50()
else:
model = pretrainedmodels.se_resnet50(pretrained=None)
layers = list(model.children())[:-1]
self.model = nn.Sequential(*layers)
def forward(self, x):
# from 224x224 to 2048
x = self.model(x)
return x.view(x.size(0), -1)
class LinearProjection(nn.Module):
'''Linear projection'''
def __init__(self, n_in, n_out):
super(LinearProjection, self).__init__()
self.fc_embed = nn.Linear(n_in, n_out, bias=True)
self.bn1d = nn.BatchNorm1d(n_out)
self._init_params()
def forward(self, x):
x = self.fc_embed(x)
x = self.bn1d(x)
return x
def _init_params(self):
nn.init.xavier_normal(self.fc_embed.weight)
nn.init.constant(self.fc_embed.bias, 0)
nn.init.constant(self.bn1d.weight, 1)
nn.init.constant(self.bn1d.bias, 0)
class ConvNet(nn.Module):
def __init__(self, backbone, embedding):
super(ConvNet, self).__init__()
self.backbone = backbone
self.embedding = embedding
def forward(self, x):
x = self.backbone(x)
x = self.embedding(x)
return x
class ProxyNet(nn.Module):
"""ProxyNet"""
def __init__(self, n_classes, dim,
proxies=None, L2=False):
super(ProxyNet, self).__init__()
self.n_classes = n_classes
self.dim = dim
self.proxies = nn.Embedding(n_classes, dim,
scale_grad_by_freq=False)
if proxies is None:
self.proxies.weight = nn.Parameter(
torch.randn(self.n_classes, self.dim),
requires_grad=True)
else:
self.proxies.weight = nn.Parameter(proxies, requires_grad=False)
if L2:
self.normalize_proxies()
def normalize_proxies(self):
norm = self.proxies.weight.data.norm(p=2, dim=1)[:, None]
self.proxies.weight.data = self.proxies.weight.data / norm
def forward(self, y_true):
proxies_y_true = self.proxies(Variable(y_true))
return proxies_y_true
class ProxyLoss(nn.Module):
def __init__(self, temperature=1.):
super(ProxyLoss, self).__init__()
self.temperature = temperature
def forward(self, x, y, proxies):
"""Proxy loss
Arguments:
x (Tensor): batch of features
y (LongTensor): corresponding instance
"""
loss = self.softmax_embedding_loss(x, y, proxies)
preds = self.predict(x, proxies)
acc = (y == preds).type(torch.FloatTensor).mean()
return loss.mean(), acc
def softmax_embedding_loss(self, x, y, proxies):
idx = torch.from_numpy(np.arange(len(x), dtype=np.int)).cuda()
diff_iZ = cosine_similarity(x, proxies)
numerator_ip = torch.exp(diff_iZ[idx, y] / self.temperature)
denominator_ip = torch.exp(diff_iZ / self.temperature).sum(1) + 1e-8
return - torch.log(numerator_ip / denominator_ip)
def classify(self, x, proxies):
idx = torch.from_numpy(np.arange(len(x), dtype=np.int)).cuda()
diff_iZ = cosine_similarity(x, proxies)
numerator_ip = torch.exp(diff_iZ[idx, :] / self.temperature)
denominator_ip = torch.exp(diff_iZ / self.temperature).sum(1) + 1e-8
probs = numerator_ip / denominator_ip[:, None]
return probs
def predict(self, x, proxies):
probs = self.classify(x, proxies)
return probs.max(1)[1].data