-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
245 lines (199 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import os
import keras
import random
import argparse
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from keras.models import Model, load_model
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
from keras.optimizers import Adam, SGD, Adamax
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
from sklearn.model_selection import train_test_split
from sklearn.utils.class_weight import compute_class_weight
import utils as myutils
from model import build_model
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-d' ,'--data_dir', type=str, default='/data/put_data/cmchang/gynecology/data/', help='data directory')
parser.add_argument('-s' ,'--model_save', type=str, default='', help='model save path')
parser.add_argument('-y' ,'--target', type=str, default=None, help='prediction target')
# input parameter
parser.add_argument('-l' ,'--length', type=int, default=300, help='length of input')
parser.add_argument('-c' ,'--n_channel', type=int, default=2, help='number of input channels')
parser.add_argument('-rn','--random_noise', type=int, default=0, help='add Gaussian noise (mean=0, std=0.01) into inputs')
parser.add_argument('-nm','--normalized', type=int, default=1, help='whether conduct channel-wise normalization')
parser.add_argument('-ks','--k_slice', type=int, default=5, help='a input will be sliced into k_slice segments when testing')
# model parameters
parser.add_argument('-k' ,'--kernel_size', type=int, default=3, help='kernel size')
parser.add_argument('-f' ,'--filters', type=int, default=64, help='base number of filters')
parser.add_argument('-ly' ,'--layers', type=int, default=10, help='number of residual layers')
parser.add_argument('-a' ,'--activation', type=str, default='relu', help='activation function')
parser.add_argument('-i' ,'--kernel_initializer', type=str, default='RandomNormal', help='kernel initialization method')
parser.add_argument('-l2','--l2', type=float, default=0.0, help='coefficient of l2 regularization')
# hyper-parameters
parser.add_argument('-bs','--batch_size', type=int, default=16, help='batch_size')
parser.add_argument('-ep','--epoch', type=int, default=100, help='epoch')
parser.add_argument('-wb','--weight_balance', type=int, default=1, help='whether weight balancing or not')
parser.add_argument('-th','--acceptable_zeros_threshold', type=float, default=90, help='acceptable number of missing values in raw data')
parser.add_argument('-g' ,'--gpu_id', type=str, default='0', help='GPU ID')
parser.add_argument('-rs' ,'--random_state', type=int, default=13, help='random state when train_test_split')
parser.add_argument('-fn' ,'--summary_file', type=str, default=None, help='summary filename')
FLAG = parser.parse_args()
print("===== create directory =====")
if not os.path.exists(FLAG.model_save):
os.makedirs(FLAG.model_save)
print("===== train =====")
train(FLAG)
def train(FLAG):
os.environ['CUDA_VISIBLE_DEVICES'] = FLAG.gpu_id
d = pd.read_csv(os.path.join(FLAG.data_dir, 'data_merged.csv'))
d = d[myutils.get_n_zeros(np.array(d[[k for k in d.columns if 'b-' in k]], dtype=np.float)) <= FLAG.acceptable_zeros_threshold]
n_classes = len(set(d[FLAG.target]))
# replace 0 (no readings) with np.nan for later substitution
for k in d.columns:
if 'b-' in k or 'm-' in k:
print(k, end='\r')
d.loc[d[k]==0, k] = np.nan
# train test split
train_id, valid_id = train_test_split(list(set(d.ID)), test_size=0.3, random_state=FLAG.random_state)
train_d, valid_d = d[[k in set(train_id) for k in d.ID]], d[[k in set(valid_id) for k in d.ID]]
# interpolate missing values
train_db = np.array(train_d[[k for k in train_d.columns if 'b-' in k]].interpolate(limit_direction='both', axis=1), dtype=np.float)
train_dm = np.array(train_d[[k for k in train_d.columns if 'm-' in k]].interpolate(limit_direction='both', axis=1), dtype=np.float)
valid_db = np.array(valid_d[[k for k in valid_d.columns if 'b-' in k]].interpolate(limit_direction='both', axis=1), dtype=np.float)
valid_dm = np.array(valid_d[[k for k in valid_d.columns if 'm-' in k]].interpolate(limit_direction='both', axis=1), dtype=np.float)
# combine signals from baby and mom
Xtrain = np.stack([train_db, train_dm], axis=2)
Xvalid = np.stack([valid_db, valid_dm], axis=2)
# convert labels to one-hot encodings
Ytrain = keras.utils.to_categorical(np.array(train_d[FLAG.target]), num_classes=n_classes)
Yvalid = keras.utils.to_categorical(np.array(valid_d[FLAG.target]), num_classes=n_classes)
# weight balancing or not
if FLAG.weight_balance:
y_integers = np.argmax(Ytrain, axis=1)
d_class_weight = compute_class_weight('balanced', np.unique(y_integers), y_integers)
class_weight = dict(enumerate(d_class_weight))
print('class weight: {0}'.format(class_weight))
else:
class_weight = dict()
for i in range(n_classes):
class_weight[i] = 1
# k fold of validation set
Xtest, Ytest, Wtest = myutils.k_slice_X(Xvalid, Yvalid, length=FLAG.length, k_slice=FLAG.k_slice, class_weight = class_weight)
if not os.path.exists(FLAG.model_save):
os.mkdir(FLAG.model_save)
print('directory {0} is created.'.format(FLAG.model_save))
else:
print('directory {0} already exists.'.format(FLAG.model_save))
def my_generator(Xtrain, Ytrain, length, n_channel, n_classes, random_noise, normalized, batch_size):
n_sample = Xtrain.shape[0]
n_length = Xtrain.shape[1]
ind = list(range(n_sample))
x = np.empty((batch_size, length, n_channel), dtype=np.float)
y = np.empty((batch_size, n_classes), dtype=int)
while True:
np.random.shuffle(ind)
for i in range(n_sample//batch_size):
st = random.choice(np.arange(0, Xtrain.shape[1] - length))
i_batch = ind[i*batch_size:(i+1)*batch_size]
for j, k in enumerate(i_batch):
x[j,:] = myutils.data_preprocess(Xtrain[k,st:(st+length),:], random_noise=random_noise, normalized=normalized)
y[j,:] = Ytrain[k,:]
yield x, y
# declare model
model = build_model(length=FLAG.length, n_channel=FLAG.n_channel, n_classes=n_classes, filters=FLAG.filters, kernel_size=FLAG.kernel_size, layers=FLAG.layers,
activation=FLAG.activation, kernel_initializer=FLAG.kernel_initializer, l_2=FLAG.l2)
model.summary()
lr_rate = 1e-5
adam = Adamax(lr=lr_rate, beta_1=0.5, beta_2=0.999, epsilon=1e-08, decay = 0.0)
model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])
csv_logger = keras.callbacks.CSVLogger(os.path.join(FLAG.model_save, 'training.log'))
checkpoint = keras.callbacks.ModelCheckpoint(os.path.join(FLAG.model_save, 'model.h5'),
monitor='val_loss',
verbose=1,
save_best_only=True,
save_weights_only=False,
mode='min',
period=1)
earlystop = EarlyStopping(monitor = 'val_loss', patience=20, verbose=1)
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor = 0.5, patience = 10, min_lr = 0, cooldown = 5, verbose = True)
# fit
model.fit_generator(generator=my_generator(Xtrain, Ytrain,
length=FLAG.length,
n_channel=FLAG.n_channel,
n_classes=n_classes,
random_noise=FLAG.random_noise,
normalized=FLAG.normalized,
batch_size=FLAG.batch_size),
class_weight=class_weight,
validation_data=(Xtest, Ytest, Wtest),
steps_per_epoch=50,
epochs=FLAG.epoch,
verbose=0,
callbacks=[csv_logger,
reduce_lr,
checkpoint,
earlystop])
# plot csv logger
myutils.plot_keras_csv_logger(csv_logger, save_dir=FLAG.model_save, accuracy=True)
# evaluate validation set
trained_model = load_model(os.path.join(FLAG.model_save,'model.h5'))
Pred = trained_model.predict(Xtest)
# evaluate by every segment
ypred_aug = np.argmax(Pred , axis=1)
ytest_aug = np.argmax(Ytest, axis=1)
cfm = confusion_matrix(y_pred=ypred_aug, y_true=ytest_aug)
plt.figure()
myutils.plot_confusion_matrix(cfm, classes=np.arange(n_classes), title='Confusion matrix, without normalization')
plt.savefig(os.path.join(FLAG.model_save, 'segment_confusion_matrix.png'))
plt.close()
# aggregate by voting
ypred = (np.mean(ypred_aug.reshape(FLAG.k_slice,-1), axis=0) > 0.5) + 0 # voting
ytest = np.argmax(Yvalid, axis=1)
# calculate aggregated results
cfm = confusion_matrix(y_pred=ypred, y_true=ytest)
recall = np.diag(cfm) / np.sum(cfm, axis=1)
precision = np.diag(cfm) / np.sum(cfm, axis=0)
vote_val_accu = accuracy_score(y_pred=ypred, y_true=ytest)
plt.figure()
myutils.plot_confusion_matrix(cfm, classes=np.arange(n_classes), title='Confusion matrix, without normalization')
plt.savefig(os.path.join(FLAG.model_save, 'voting_confusion_matrix.png'))
plt.close()
# read traing.log
loss = pd.read_table(csv_logger.filename, delimiter=',')
best_val_loss = np.min(loss.val_loss)
best_epoch = np.argmin(loss.val_loss)
# calculate average accuracy from segments
# and voting accuracy
tmp = ypred_aug.reshape(FLAG.k_slice,-1)
savg_val_accu = 0.0
for i in range(tmp.shape[0]):
accu = accuracy_score(y_pred=tmp[i,:], y_true=ytest)
print('{0}-segment accuracy={1}'.format(i, accu))
savg_val_accu += accu
savg_val_accu /= tmp.shape[0]
print('avg accu={0}'.format(savg_val_accu))
print('vote accu={0}'.format(vote_val_accu))
# save into dictionary
sav = vars(FLAG)
sav['epoch'] = best_epoch
sav['val_loss'] = best_val_loss
sav['vote_val_accu'] = vote_val_accu
sav['savg_val_accu'] = savg_val_accu
for i in range(n_classes):
sav['recall-{0}'.format(i)] = recall[i]
sav['precision-{0}'.format(i)] = precision[i]
# append into summary files
dnew = pd.DataFrame(sav, index=[0])
if os.path.exists(FLAG.summary_file):
dori = pd.read_csv(FLAG.summary_file)
dori = pd.concat([dori, dnew])
dori.to_csv(FLAG.summary_file, index=False)
else:
dnew.to_csv(FLAG.summary_file, index=False)
print(FLAG.summary_file)
if __name__ == '__main__':
main()