Skip to content

Deep Flow Rendering: View Synthesis via Layer-aware Reflection Flow (CGF and EGSR 2022)

Notifications You must be signed in to change notification settings

turandai/deep_flow_rendering

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Flow Rendering

This is the original implementation for the Computer Graphics Forum (2022) paper:
"Deep Flow Rendering: View Synthesis via Layer-aware Reflection Flow",
by Pinxuan Dai & Ning Xie, UESTC.

Reqiurments

TensorFlow 1.15.0, NVdiffrast 0.3.0, and install other packages via:

conda env create -f requirements.yml
conda activate dfr

Usage

  • Clone this repository and prepare test data as below.
  • Specify data path, model name, and training configurations directly in code/main.py.
  • Run:
cd dfr/code
python main.py

Data

Example data:

  • Download example data used in the paper from here.
  • Unzip it in the dfr base dir:
mv path_to_download/dfr_data.zip ./
unzip dfr_data.zip 

Custome data:

  • Use COLMAP's:
    • Sparse reconstruction for camera poses (use pinhole model and txt output) to get cameras.txt and images.txt,
    • Dense reconstruction for mesh (might need manual configuration for a fine mesh) and convert it into .obj format.
  • Use Blender (or any other equivalent like xatlas) to generate texture atlas for the reconstructed mesh.obj.
  • Arrange your custome data dir custome_scene in the same way as the example data:
dfr/
|—— code/...
|—— result/...
|—— data/
|   |—— custome_scene/
|   |   |—— images/
|   |   |   |—— img_0.jpg
|   |   |   |—— ...
|   |   |   |—— img_n.jpg
|   |   |—— cameras.txt
|   |   |—— images.txt
|   |   |—— mesh.obj
|   |—— ...

Citation

@article{DaiDFR_CGF2022,
    author = {Dai, Pinxuan and Xie, Ning},
    title = {Deep Flow Rendering: View Synthesis via Layer-aware Reflection Flow},
    journal = {Computer Graphics Forum},
    volume = {41},
    number = {4},
    pages = {139-148},
    doi = {https://doi.org/10.1111/cgf.14593},
    year = {2022}
}

About

Deep Flow Rendering: View Synthesis via Layer-aware Reflection Flow (CGF and EGSR 2022)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages