-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
339 lines (272 loc) · 9.92 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
from config import *
import json
import subprocess
from time import sleep
from collections import Counter
import pickle
import os
from datetime import datetime
import numpy as np
from tqdm import tqdm
import pandas as pd
from sklearn.model_selection import train_test_split, KFold
def load_data(path=USERS_FILE, format="json"):
ext = path.split(".")[-1]
if ext == "json":
if format == "json":
data = json.load(open(path))
elif format == "pandas":
data = pd.read_json(path)
else:
data = None
elif ext == "csv":
data = pd.read_csv(path)
else:
data = None
return data
def load_ref_target_data():
return pd.read_csv(REF_TARGET_FILE)
def get_user_from_api(username):
res = subprocess.run(["gh", "api", f"users/{username}"], capture_output=True)
return json.loads(res.stdout.decode())
def get_user_follows(username):
user_following = subprocess.run(
["gh", "api", f"/users/{username}/following"], capture_output=True
)
user_following = json.loads(user_following.stdout.decode())
if isinstance(user_following, dict):
return
follows = []
for u in user_following:
follows.append([username, u["login"]])
user_followers = subprocess.run(
["gh", "api", f"/users/{username}/followers"], capture_output=True
)
user_followers = json.loads(user_followers.stdout.decode())
if isinstance(user_followers, dict):
return
for u in user_followers:
follows.append([u["login"], username])
return follows
def get_repo_lang_ratios(langs_dict):
total = sum(langs_dict.values())
if total == 0:
return {}
for key in langs_dict:
langs_dict[key] = round(langs_dict[key] / total, 3)
return langs_dict
def merge_repo_lang_ratios(orig_langs_dict, langs_dict):
for key in langs_dict:
try:
orig_langs_dict[key] += langs_dict[key]
except:
orig_langs_dict[key] = langs_dict[key]
return orig_langs_dict
def get_user_repos(username):
user_repos = subprocess.run(
[
"gh",
"api",
f"/users/{username}/repos?sort=updated_at&direction=desc&per_page=5",
],
capture_output=True,
)
user_repos = json.loads(user_repos.stdout.decode())
if isinstance(user_repos, dict):
if "message" in user_repos:
message = user_repos["message"].lower()
if "not found" in message:
print(f"{username} not found")
return -1
elif "rate limit" in message:
return
else:
return
languages = {}
topics = []
if len(user_repos) > 0:
user_repos = sorted(user_repos, key=lambda d: d["updated_at"])
user_repos = user_repos[-USER_REPOS_MAX:]
for r in user_repos:
langs = subprocess.run(
["gh", "api", f'/repos/{username}/{r["name"]}/languages'],
capture_output=True,
)
langs = langs.stdout.decode()
if len(langs) > 0:
langs = json.loads(langs)
else:
return
if "message" in langs:
if "rate limit" in langs["message"].lower():
return
else:
langs = {r["language"]: 1}
try:
langs = get_repo_lang_ratios(langs)
except:
return
languages = merge_repo_lang_ratios(languages, langs)
topics += r["topics"]
languages = get_repo_lang_ratios(languages)
topics = Counter(topics)
topics = dict(topics)
return languages, topics
def get_absent_users_from_api():
try:
users = load_data(format="pandas")
users = users.replace({np.nan: None})
usernames = users["login"].values
users = users.to_dict(orient="records")
except:
users = []
usernames = []
ref_users = load_ref_target_data()
ref_usernames = ref_users["name"].values
absent_usernames = set(ref_usernames).difference(usernames)
print(f"Found {len(absent_usernames)} absent users")
# TODO: Threading
for i, username in enumerate(tqdm(absent_usernames)):
api_error = True
while api_error:
user = get_user_from_api(username)
if "message" in user:
message = user["message"].lower()
if "rate limit" in message:
api_error = True
print(
f"Rate limit error. Waiting for {RATE_LIMIT_WAIT/60} minutes..."
)
sleep(RATE_LIMIT_WAIT)
elif "not found" in message:
api_error = False
else:
users.append(user)
if (i + 1) % 100 == 0:
json.dump(users, open(USERS_FILE, "w"), default=str)
api_error = False
json.dump(users, open(USERS_FILE, "w"), default=str)
def get_user_relations_from_api():
users = load_data(format="pandas")
try:
all_user_relations = load_data(USER_ORIG_RELATIONS_FILE, "pandas")
except:
all_user_relations = pd.DataFrame(columns=["following", "follow"])
absent_usernames = set(users["login"].values).difference(
all_user_relations["following"].values
)
print(f"Found {len(absent_usernames)} absent users")
# TODO: Threading
for i, username in enumerate(tqdm(absent_usernames)):
api_error = True
while api_error:
user_relations = get_user_follows(username)
if user_relations is None:
print(f"Rate limit error. Waiting for {RATE_LIMIT_WAIT/60} minutes...")
sleep(RATE_LIMIT_WAIT)
else:
user_relations = pd.DataFrame(
user_relations, columns=["following", "follow"]
)
all_user_relations = pd.concat([all_user_relations, user_relations])
api_error = False
if (i + 1) % 100 == 0:
all_user_relations.to_csv(USER_ORIG_RELATIONS_FILE, index=False)
all_user_relations.to_csv(USER_ORIG_RELATIONS_FILE, index=False)
def get_user_repos_from_api():
users = load_data(format="pandas")
try:
all_user_repos = load_data(USER_REPOS_FILE)
except:
all_user_repos = []
absent_usernames = set(users["login"].values).difference(
[r_s["username"] for r_s in all_user_repos]
)
# TODO: Threading
for i, username in enumerate(tqdm(absent_usernames)):
api_error = True
while api_error:
user_repos = get_user_repos(username)
if user_repos == -1:
api_error = False
elif user_repos is None:
print(
f"Rate limit error for {username}. Waiting for {RATE_LIMIT_WAIT/60} minutes..."
)
sleep(RATE_LIMIT_WAIT)
else:
langs, topics = user_repos
all_user_repos.append(
{"username": username, "languages": langs, "topics": topics}
)
api_error = False
if (i + 1) % 100 == 0:
json.dump(all_user_repos, open(USER_REPOS_FILE, "w"), default=str)
json.dump(all_user_repos, open(USER_REPOS_FILE, "w"), default=str)
def convert_to_single_label(row):
new_row = row.copy()
ind = np.argwhere(new_row.values)[0][0]
new_row[ind + 1 :] = 0
return new_row
def preprocess(
df,
labels,
include_unlabeled=False,
multi_label=False,
test_size=0.2,
n_splits=1
):
feats = list(df.columns)
indices = list(set(labels.index).intersection(df.index))
df_labeled = df.loc[indices]
labels = labels.loc[indices]
features = df_labeled[feats].sort_index()
labels = labels.sort_index()
if multi_label:
raise NotImplementedError("Multi label is not implemented yet.")
else:
labels = labels.apply(convert_to_single_label, axis=1)
labels = labels.idxmax(axis=1)
X_train, X_test, y_train, y_test = [], [], [], []
if n_splits > 1:
kf = KFold(n_splits=n_splits, shuffle=True)
for train_index, test_index in kf.split(features, labels):
X_train.append(features.iloc[train_index].copy())
X_test.append(features.iloc[test_index].copy())
y_train.append(labels.iloc[train_index].copy())
y_test.append(labels.iloc[test_index].copy())
else:
X_tr, X_te, y_tr, y_te = train_test_split(
features, labels, stratify=labels, test_size=test_size, random_state=42
)
X_train.append(X_tr)
X_test.append(X_te)
y_train.append(y_tr)
y_test.append(y_te)
if include_unlabeled:
unlabeled_indices = list(set(df.index).difference(indices))
df_unlabeled = df.loc[unlabeled_indices]
X_unlabeled = df_unlabeled[feats]
return X_train, X_test, y_train, y_test, X_unlabeled
else:
return X_train, X_test, y_train, y_test, None
def load_all_data():
users = load_data(format="pandas")
features = load_data(USER_FEATURES_FILE, format="pandas")
relations = load_data(USER_RELATIONS_FILE, format="pandas")
labels = load_data(USER_LABELS_FILE, format="pandas")
users = users.set_index("login")
features = features.set_index("username")
labels = labels.set_index("login")
return users, features, relations, labels
def update_experiments(data):
data['timestamp'] = datetime.now()
if os.path.exists('experiments.csv'):
exps = pd.read_csv('experiments.csv')
data['id'] = exps['id'].max() + 1
else:
data['id'] = 1
exps = pd.DataFrame(columns=data.keys())
row = pd.DataFrame(data, index=[0])
exps = pd.concat([exps, row])
exps.to_csv('experiments.csv', index=False)