-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_rcvitgan_Ds.py
527 lines (441 loc) · 23 KB
/
train_rcvitgan_Ds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
from argparse import ArgumentParser
from pathlib import Path
import shutil
import imageio
def silence_imageio_warning(*args, **kwargs):
pass
imageio.core.util._precision_warn = silence_imageio_warning
import gin
import numpy as np
import torch
import torch.nn as nn
from torch import autograd
import torch.optim as optim
from torch.utils.data import DataLoader
#from evaluate.gan import FIDScore, FixedSampleGeneration, ImageGrid
from datasets import get_dataset
from augment import get_augment
from models.gan import get_architecture
from utils import cycle,cycle3,cycle4
from training.gan import setup
from utils import Logger
from utils import count_parameters
from utils import accumulate
from utils import set_grad
#from data_parallel1 import BalancedDataParallel
# import for gin binding
import penalty
import wandb
import time
# import for evaluation
#from evaluate.gan import FIDScore, FixedSampleGeneration, ImageGrid
#from torchvision import datasets, transforms
from mydiscriminator import ResidualDiscriminatorP#,Pix2PixDiscriminator
from fid_score import my_fid_score
from tensorboardX import SummaryWriter
writer=SummaryWriter('out/log_dino_noSLN_smoothL1_Ds')
from collections import OrderedDict
from ignite.engine import *
from ignite.handlers import *
from ignite.metrics import *
from ignite.utils import *
from ignite.contrib.metrics.regression import *
from ignite.contrib.metrics import *
try:
from third_party.fid.inception import InceptionV3
except ImportError:
from inception import InceptionV3
def eval_step(engine, batch):
return batch
default_evaluator = Engine(eval_step)
default_model = nn.Sequential(OrderedDict([
('base', nn.Linear(4, 2)),
('fc', nn.Linear(2, 1))
]))
# # wrapper class as feature_extractor
# class WrapperInceptionV3(nn.Module):
# def __init__(self, fid_incv3):
# super().__init__()
# self.fid_incv3 = fid_incv3
# @torch.no_grad()
# def forward(self, x):
# y = self.fid_incv3(x)
# y = y[0]
# y = y[:, :, 0, 0]
# return y
# block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[192]
# model = InceptionV3([block_idx]).cuda()
# # wrapper model to pytorch_fid model
# wrapper_model = WrapperInceptionV3(model)
# wrapper_model.eval()
from color_harmonization import ch_loss
import torch.nn.functional as F
import warnings
warnings.filterwarnings("ignore",category=DeprecationWarning)
def parse_args():
"""Training script for StyleGAN2."""
parser = ArgumentParser(description='Training script: StyleGAN2 with DataParallel.')
parser.add_argument('gin_config', type=str, help='Path to the gin configuration file')
parser.add_argument('architecture', type=str, help='Architecture')
parser.add_argument('--mode', default='std', type=str, help='Training mode (default: std)')
parser.add_argument('--penalty', default='none', type=str, help='Penalty (default: none)')
parser.add_argument('--aug', default='none', type=str, help='Augmentation (default: hfrt)')
parser.add_argument('--use_warmup', action='store_true', help='Use warmup strategy on LR')
parser.add_argument('--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 0)')
parser.add_argument('--temp', default=0.1, type=float,
help='Temperature hyperparameter for contrastive losses')
parser.add_argument('--lbd_a', default=1.0, type=float,
help='Relative strength of the fake loss of ContraD')
# Options for StyleGAN2 training
parser.add_argument('--no_lazy', action='store_true',
help='Do not use lazy regularization')
parser.add_argument("--d_reg_every", type=int, default=16,
help='Interval of applying R1 when lazy regularization is used')
parser.add_argument("--lbd_r1", type=float, default=10, help='R1 regularization')
parser.add_argument('--style_mix', default=0.9, type=float, help='Style mixing regularization')
parser.add_argument('--halflife_k', default=20, type=int,
help='Half-life of exponential moving average in thousands of images')
parser.add_argument('--ema_start_k', default=None, type=int,
help='When to start the exponential moving average of G (default: halflife_k)')
parser.add_argument('--halflife_lr', default=0, type=int, help='Apply LR decay when > 0')
parser.add_argument('--use_nerf_proj', action='store_true')
# Options for logging specification
parser.add_argument('--no_fid', action='store_true',
help='Do not track FIDs during training')
parser.add_argument('--no_gif', action='store_true',
help='Do not save GIF of sample generations from a fixed latent periodically during training')
parser.add_argument('--n_eval_avg', default=3, type=int,
help='How many times to average FID and IS')
parser.add_argument('--print_every', help='', default=1000, type=int)
parser.add_argument('--evaluate_every', help='', default=2000, type=int)
parser.add_argument('--save_every', help='', default=10000, type=int)
parser.add_argument('--comment', help='Comment', default='', type=str)
# Options for resuming / fine-tuning
parser.add_argument('--resume', default=None, type=str,
help='Path to logdir to resume the training')
parser.add_argument('--finetune', default=None, type=str,
help='Path to logdir that contains a pre-trained checkpoint of D')
return parser.parse_args()
def _update_warmup(optimizer, cur_step, warmup, lr):
if warmup > 0:
ratio = min(1., (cur_step + 1) / (warmup + 1e-8))
lr_w = ratio * lr
for param_group in optimizer.param_groups:
param_group['lr'] = lr_w
def _update_lr(optimizer, cur_step, batch_size, halflife_lr, lr, mult=1.0):
if halflife_lr > 0 and (cur_step > 0) and (cur_step % 10000 == 0):
#ratio = (cur_step * batch_size) / halflife_lr
ratio=cur_step/10000-11
lr_mul = 0.5 ** ratio
lr_w = lr_mul * lr * mult
for param_group in optimizer.param_groups:
param_group['lr'] = lr_w
return lr_w
return None
def r1_loss(D, images, augment_fn):
images_aug = augment_fn(images).detach()
images_aug.requires_grad = True
d_real = D(images_aug)
grad_real, = autograd.grad(outputs=d_real.sum(), inputs=images_aug,
create_graph=True, retain_graph=True)
grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean()
return grad_penalty
def _sample_generator(G, num_samples, enable_grad=True,imgs=None,illus=None):
latent_samples = G.sample_latent(num_samples)
if enable_grad:
generated_data = G(x=imgs,input=latent_samples,illu=illus)
#print(summary(G, imgs.shape,latent_samples.shape))
else:
with torch.no_grad():
generated_data = G(x=imgs,input=latent_samples,illu=illus)
#print(summary(G, imgs.shape,latent_samples.shape))
return generated_data
@gin.configurable("options")
def get_options_dict(dataset=gin.REQUIRED,
loss=gin.REQUIRED,
batch_size=32, fid_size=10000,
max_steps=200, warmup=0, n_critic=1,
lr=0.002, lr_d=None, beta=(.0, .99),
lbd=1., lbd2=1.):
if lr_d is None:
lr_d = lr
return {
"dataset": dataset,
"batch_size": batch_size,
"fid_size": fid_size,
"loss": loss,
"max_steps": max_steps, "warmup": warmup,
"n_critic": n_critic,
"lr": lr, "lr_d": lr_d, "beta": beta,
"lbd": lbd, "lbd2": lbd2
}
def train(P, opt, train_fn, models, optimizers,
ltrain_ltarget_pair_loader,
presudo_pair_loader,
val_pair_loader,logger):
generator, discriminator_single, g_ema = models
opt_G,opt_DS = optimizers
for param_group in opt_G.param_groups:
param_group['lr'] = opt["lr"]
print(f"G_lr为{param_group['lr']}")
for param_group in opt_DS.param_groups:
param_group['lr'] = opt["lr"]
print(f"DS_lr为{param_group['lr']}")
losses = {'G_loss': [],'G_critic_loss': [], 'G_l_mse_loss': [], 'G_ch_loss': [],
'DS_loss': [], 'DS_penalty': [],'DS_real': [], 'DS_gen': [], 'DS_r1': []
}
metrics={'fid_score':[]}
# metrics={}
# metrics['fid_score'] = FIDScore(opt['dataset'], opt['fid_size'], P.n_eval_avg)
metric_SSIM = SSIM(data_range=1.0)
metric_PSNR = PSNR(data_range=1.0)
#metric_FID = FID(num_features=192, feature_extractor=default_model)
metric_SSIM.attach(default_evaluator, 'ssim')
metric_PSNR.attach(default_evaluator, 'psnr')
#metric_FID.attach(default_evaluator, 'fid')
logger.log_dirname("Steps {}".format(P.starting_step))
for step in range(P.starting_step, opt['max_steps'] + 1):
if step % P.evaluate_every == 0:
val_images,val_images128,val_target_images,val_illus=next(val_pair_loader)
val_images = val_images.cuda()
val_target_images=val_target_images.cuda()
val_illus=val_illus.cuda()
val_images128=val_images128.cuda()
with torch.no_grad():
val_gen_images = _sample_generator(generator, val_images.size(0),enable_grad=True,imgs=val_images,illus=val_illus)
val_ch_loss=ch_loss(val_gen_images,img_size=128)
val_target_loss=F.smooth_l1_loss(val_gen_images,val_target_images)
#writer.add_scalar('stage2_val_fid',val_fid_value,step)
#print(f"图片类型为{val_target_images.dtype}和{val_gen_images.dtype}")torch.float32
#print(f"{torch.max(val_target_images)-torch.min(val_target_images)}")1.0
#print(f"{torch.max(val_gen_images)-torch.min(val_gen_images)}")1.0
state = default_evaluator.run([[val_gen_images,val_target_images]])
fid_value=my_fid_score(path_base='base_stats.npz', G=generator, size=val_images.size(0), batch_size=val_images.size(0), model=None, dims=192)
metrics['fid_score'].append(fid_value)
writer.add_scalar('stage2_val_SSIM',state.metrics['ssim'],step)
writer.add_scalar('stage2_val_PSNR',state.metrics['psnr'],step)
writer.add_scalar('stage2_val_FID',fid_value,step)
#writer.add_scalar('stage2_val_FID',state.metrics['fid'],step)
writer.add_scalar('stage2_val_ch_loss',val_ch_loss,step)
writer.add_scalar('stage2_val_target_loss',val_target_loss,step)
# logger.log('[Steps %7d][stage2_val_SSIM %.7f][stage2_val_PSNR %.7f][stage2_val_FID %.7f][stage2_val_ch_loss %.7f] [stage2_val_target_loss %.14f]' %
# (step, state.metrics['ssim'], state.metrics['psnr'],state.metrics['fid'], val_ch_loss, val_target_loss))
logger.log('[Steps %7d][stage2_val_SSIM %.7f][stage2_val_PSNR %.7f][stage2_val_ch_loss %.7f] [stage2_val_target_loss %.14f]' %
(step, state.metrics['ssim'], state.metrics['psnr'],val_ch_loss, val_target_loss))
d_regularize = (step % P.d_reg_every == 0) and (P.lbd_r1 > 0)
if P.use_warmup:
_update_warmup(opt_G, step, opt["warmup"], opt["lr"])
_update_warmup(opt_DS, step, opt["warmup"], opt["lr_d"])
if (not P.use_warmup) or step > opt["warmup"]:
cur_lr_g = _update_lr(opt_G, step, opt["batch_size"], P.halflife_lr, opt["lr"])
cur_lr_ds = _update_lr(opt_DS, step, opt["batch_size"], P.halflife_lr, opt["lr_d"])
if cur_lr_ds and cur_lr_g:
logger.log('LR Updated: [G %.10f][DS %.10f]' % (cur_lr_g,cur_lr_ds))
do_ema = (step * opt['batch_size']) > (P.ema_start_k * 1000)
accum = P.accum if do_ema else 0
accumulate(g_ema, generator, accum)
# Start discriminator training
generator.train()
discriminator_single.train()
images,target_images,illus,real_images=next(presudo_pair_loader)
images=images.cuda()
target_images=target_images.cuda()
illus=illus.cuda()
real_images=real_images.cuda()
ltrain_images, ltarget_images,lillus,lgan_images = next(ltrain_ltarget_pair_loader)
ltrain_images=ltrain_images.cuda()
ltarget_images=ltarget_images.cuda()
lillus=lillus.cuda()
lgan_images=lgan_images.cuda()
set_grad(generator, False)
set_grad(discriminator_single, True)
ugen_images = _sample_generator(generator, images.size(0),enable_grad=True,imgs=images,illus=illus)
#ds
ds_loss, ds_aux = train_fn["train3_D_match"](P, discriminator_single, opt,real_images,ugen_images)
loss = ds_loss+ ds_aux['penalty']
opt_DS.zero_grad()
loss.backward()
opt_DS.step()
losses['DS_loss'].append(ds_loss.item())
losses['DS_real'].append(ds_aux['d_real'].item())
losses['DS_gen'].append(ds_aux['d_gen'].item())
losses['DS_penalty'].append(ds_aux['penalty'].item())
writer.add_scalars('stage2_D',{'ds_loss': losses['DS_loss'][-1], 'ds_penalty': losses['DS_penalty'][-1]}, step)
# Start generator training
set_grad(generator, True)
set_grad(discriminator_single, False)
ugen_images = _sample_generator(generator, images.size(0),enable_grad=True,imgs=images,illus=illus)
gs_loss ,gs_aux= train_fn["train3_G_match"](P, discriminator_single, opt,ugen_images,target_images,ugen_images)
g_loss=gs_loss
opt_G.zero_grad()
g_loss.backward()
opt_G.step()
losses['G_loss'].append(g_loss.item())
losses['G_critic_loss'].append(gs_aux['critic_loss'].item())
losses['G_l_mse_loss'].append(gs_aux['l_mse_loss'].item())
losses['G_ch_loss'].append(gs_aux['g_ch_loss'].item())
writer.add_scalars('stage2_G_D',{'g_loss': g_loss.item(), 'd_loss': loss.item()}, step)
writer.add_scalars('stage2_G',{'g_critic_loss': losses['G_critic_loss'][-1], 'g_l_mse_loss': losses['G_l_mse_loss'][-1],'g_ch_loss':losses['G_ch_loss'][-1]}, step)
generator.eval()
discriminator_single.eval()
if step % P.print_every == 0:
logger.log('[Steps %7d][G %.7f][G_critic %.7f] [G_l_mse %.7f] [G_ch_loss %.14f][DS %.7f][DS_real %.7f][DS_gen %.7f][DS_penalty %.7f]' %
(step, losses['G_loss'][-1], losses['G_critic_loss'][-1], losses['G_l_mse_loss'][-1], losses['G_ch_loss'][-1],
losses['DS_loss'][-1],losses['DS_real'][-1], losses['DS_gen'][-1],losses['DS_penalty'][-1]))
for name in losses:
values = losses[name]
if len(values) > 0:
logger.scalar_summary('gan/train/' + name, values[-1], step)
if step % P.evaluate_every == 0:
logger.log_dirname("Steps {}".format(step + 1))
#wandb.log({"augmented_real_images": wandb.Image(aug_grid), "generated_images": wandb.Image(fixed_gen.summary()[-1])}, step=step)
#fid_score = metrics.get('fid_score')
G_state_dict = generator.module.state_dict()
#DP_state_dict = discriminator_pair.module.state_dict()
DS_state_dict = discriminator_single.module.state_dict()
Ge_state_dict = g_ema.state_dict()
#fid_value=my_fid_score(path_base='base_stats.npz', G=generator, size=images.size(0), batch_size=images.size(0), model=None, dims=192)
#metrics['fid_score'].append(fid_value)
logger.log('[Steps %7d][fid_score %.7f]' %(step, metrics['fid_score'][-1]))
torch.save(G_state_dict, logger.logdir + '/gen_stage3_Ds.pt')
torch.save(DS_state_dict, logger.logdir + '/disS_stage3_Ds.pt')
torch.save(Ge_state_dict, logger.logdir + '/gen_ema_stage3_Ds.pt')
# if fid_score and fid_score.is_best:
# torch.save(G_state_dict, logger.logdir + '/gen_best.pt')
# torch.save(DS_state_dict, logger.logdir + '/dis_best.pt')
# torch.save(Ge_state_dict, logger.logdir + '/gen_ema_best.pt')
if step % P.save_every == 0:
torch.save(G_state_dict, logger.logdir + f'/gen_stage3_Ds_{step}.pt')
torch.save(DS_state_dict, logger.logdir + f'/disS_stage3_Ds_{step}.pt')
torch.save(Ge_state_dict, logger.logdir + f'/gen_ema_stage3_Ds_{step}.pt')
torch.save({'epoch': step,'optim_G': opt_G.state_dict(),'optim_DS': opt_DS.state_dict(),
}, logger.logdir + f'/optim_stage3_Ds_{step}.pt')
torch.save({
'epoch': step,
'optim_G': opt_G.state_dict(),
'optim_DS': opt_DS.state_dict(),
}, logger.logdir + '/optim_stage3_Ds.pt')
def worker(P):
gin.parse_config_files_and_bindings(['configs/defaults/gan.gin',
'configs/defaults/augment.gin',
P.gin_config], [])
options = get_options_dict()
seed=10
torch.manual_seed(seed)
ltrain_lgan_ltarget_pair_set,image_size=get_dataset(dataset='labeled_data_stage3')
presudo_pair_set,resolution= get_dataset(dataset='unlabeled_data1_LAB_presudo_stage3')
val_pair_set,val_resolution=get_dataset(dataset='val_data_stage3')
seed=10
torch.manual_seed(seed)
ltrain_ltarget_pair_loader=DataLoader(ltrain_lgan_ltarget_pair_set, shuffle=True, pin_memory=True, num_workers=P.workers,
batch_size=options['batch_size'], drop_last=True)
presudo_pair_loader=DataLoader(presudo_pair_set, shuffle=True, pin_memory=True, num_workers=P.workers,
batch_size=options['batch_size'], drop_last=True)
val_pair_loader = DataLoader(val_pair_set, shuffle=False, pin_memory=False, num_workers=P.workers,
batch_size=50, drop_last=False)
ltrain_ltarget_pair_loader = cycle4(ltrain_ltarget_pair_loader)
presudo_pair_loader=cycle4(presudo_pair_loader)
val_pair_loader=cycle4(val_pair_loader)
if P.no_lazy:
P.d_reg_every = 1
if P.ema_start_k is None:
P.ema_start_k = P.halflife_k
P.accum = 0.5 ** (options['batch_size'] / (P.halflife_k * 1000))
from vit_generator_skip import vit_my_8
resolution = image_size[0]
generator = vit_my_8(patch_size=16)
g_ema = vit_my_8(patch_size=16)
discriminator_pair = ResidualDiscriminatorP(size=resolution, small32=False,mlp_linear=True, d_hidden=512)
discriminator_single = ResidualDiscriminatorP(size=resolution, small32=False,mlp_linear=True, d_hidden=512,input_channel=3)
if P.resume:
print(f"=> Loading checkpoint from '{P.resume}'")
state_G = torch.load(f"{P.resume}/gen_stage2.pt")
#state_DP = torch.load(f"{P.resume}/disP_stage3.pt")
#state_DS = torch.load(f"{P.resume}/disS_stage3.pt")
state_Ge = torch.load(f"{P.resume}/gen_ema_stage2.pt")
# state_G = torch.load(f"{P.resume}/gen_50000_stage2.pt")
# state_Ge = torch.load(f"{P.resume}/gen_ema_50000_stage2.pt")
#state_G = torch.load(f"{P.resume}/gen_best.pt")
#print(f"state_G为{state_G.items()}")
generator.load_state_dict(state_G,strict=False)
#discriminator_pair.load_state_dict(state_DP,strict=True)
#discriminator_single.load_state_dict(state_DS,strict=True)
g_ema.load_state_dict(state_Ge,strict=False)
if P.finetune:
print(f"=> Loading checkpoint for fine-tuning: '{P.finetune}'")
#state_DP = torch.load(f"{P.finetune}/dis_pair.pt")
#discriminator_pair.load_state_dict(state_DP, strict=False)
#discriminator_pair.reset_parameters(discriminator_pair.linear)
state_DS = torch.load(f"{P.finetune}/dis_single.pt")
discriminator_single.load_state_dict(state_DS, strict=False)
discriminator_single.reset_parameters(discriminator_single.linear)
P.comment += 'ft'
generator = generator.cuda()
#discriminator_pair = discriminator_pair.cuda()
discriminator_single = discriminator_single.cuda()
g_ema = g_ema.cuda()
g_ema.eval()
for name, param in generator.named_parameters():
if "cls_token" in name or "pos_embed" in name or "style." in name or "blocks." in name or "norm." in name:
param.requires_grad=False
G_optimizer = optim.Adam(filter(lambda p: p.requires_grad, generator.parameters()),lr=options["lr"], betas=options["beta"])
D_optimizer_single = optim.Adam(discriminator_single.parameters(),
lr=options["lr_d"], betas=options["beta"])
if P.resume:
logger = Logger(None, resume=P.resume)
#wandb.init(project='vitgan', name=f'{P.gin_stem}_{P.architecture}_' + f'{P.filename}_{_desc}{P.comment}', resume=True)
#wandb.config.update(P)
#wandb.config.update(options)
#wandb.watch(generator)
#wandb.watch(discriminator)
else:
_desc = f"R{P.lbd_r1}_H{P.halflife_k}"
if P.halflife_lr > 0:
_desc += f"_lr{P.halflife_lr / 1000000:.1f}M"
_desc += f"_NoLazy" if P.no_lazy else "_Lazy"
_desc += f"_Warmup" if P.use_warmup else "_NoWarmup"
logger = Logger(f'{P.filename}_{_desc}{P.comment}', subdir=f'gan_dp/{P.gin_stem}/{P.architecture}')
#wandb.init(project='vitgan', name=f'{P.gin_stem}_{P.architecture}_' + f'{P.filename}_{_desc}{P.comment}')
#wandb.config.update(P)
#wandb.config.update(options)
#wandb.watch(generator)
#wandb.watch(discriminator)
shutil.copy2(P.gin_config, f"{logger.logdir}/config.gin")
P.logdir = logger.logdir
P.eval_seed = np.random.randint(10000)
if P.resume:
opt = torch.load(f"{P.resume}/optim_stage2.pt")
# G_optimizer.load_state_dict(opt['optim_G'])
# D_optimizer_single.load_state_dict(opt['optim_DS'])
logger.log(f"Checkpoint loaded from '{P.resume}'")
P.starting_step = opt['epoch'] + 1
else:
logger.log(generator)
logger.log(discriminator_pair)
logger.log(discriminator_single)
logger.log(f"# Params - G: {count_parameters(generator)}, D_single: {count_parameters(discriminator_single)}")
logger.log(options)
P.starting_step = 1
logger.log(f"Use G moving average: {P.accum}")
if P.finetune:
logger.log(f"Checkpoint loaded from '{P.finetune}'")
P.augment_fn = get_augment(mode=P.aug).cuda()
generator = nn.DataParallel(generator)
g_ema = nn.DataParallel(g_ema)
generator.sample_latent = generator.module.sample_latent
discriminator_single = nn.DataParallel(discriminator_single)
train(P, options, P.train_fn,
models=(generator, discriminator_single, g_ema),
optimizers=(G_optimizer,D_optimizer_single),
ltrain_ltarget_pair_loader=ltrain_ltarget_pair_loader,
presudo_pair_loader=presudo_pair_loader,
val_pair_loader=val_pair_loader,logger=logger)
if __name__ == '__main__':
P = parse_args()
if P.comment:
P.comment = '_' + P.comment
P.gin_stem = Path(P.gin_config).stem
P = setup(P)
P.distributed = False
worker(P)