forked from formal-verification-research/ParallelFGSM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_mnist_cnn_tf.py
106 lines (88 loc) · 3.48 KB
/
make_mnist_cnn_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import tensorflow as tf
import numpy as np
tf.logging.set_verbosity(tf.logging.INFO)
def reset_graph(seed=42):
tf.reset_default_graph()
tf.set_random_seed(seed)
np.random.seed(seed)
def build_cnn_mnist_model(input_placeholder, labels, training=True):
"""Model function for CNN."""
# Input Layer
input_layer = tf.reshape(input_placeholder, [-1, 28, 28, 1], name='x_reshaped')
# Convolutional Layer #1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu,
name='conv_1')
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2, name='pool_1')
# Convolutional Layer #2 and Pooling Layer #2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu,
name='conv_2')
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2, name='pool_2')
# Dense Layer
pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
dense = tf.layers.dense(
inputs=pool2_flat, units=1024, activation=tf.nn.relu)
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=training)
# Logits Layer
logits = tf.layers.dense(inputs=dropout, units=10)
classes = tf.argmax(input=logits, axis=1)
probabilities = tf.nn.softmax(logits, name="softmax_tensor")
# Calculate Loss (for both TRAIN and EVAL modes)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
# Configure the Training Op (for TRAIN mode)
optimizer = tf.train.AdamOptimizer()
train_op = optimizer.minimize(loss)
correct = tf.nn.in_top_k(logits, labels, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
return {
'loss': loss,
'train': train_op,
'optimize': optimizer,
'probability': probabilities,
'accuracy': accuracy,
'logits': logits,
}
if __name__ == '__main__':
reset_graph()
x = tf.placeholder(tf.float32, shape=(None, 28, 28))
y = tf.placeholder(tf.int32, shape=(None,))
model = build_cnn_mnist_model(x, y)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train/np.float32(255)
y_train = y_train.astype(np.int32)
x_test = x_test/np.float32(255)
y_test = y_test.astype(np.int32)
print(x_train.shape, x_train.dtype)
num_epochs = 30
batch_size = 100
with tf.Session() as sess:
init.run()
acc = 0.0
for epoch in range(num_epochs):
print('Epoch: {}'.format(epoch))
for i in range(x_train.shape[0] // batch_size):
# print('Batch: {}'.format(i))
batch_indices = np.random.randint(x_train.shape[0], size=batch_size)
x_batch = x_train[batch_indices]
y_batch = y_train[batch_indices]
sess.run(model['train'], feed_dict={x: x_batch, y: y_batch})
# acc_train = model['accuracy'].eval(feed_dict={x: x_train, y: y_train})
acc_test = model['accuracy'].eval(feed_dict={x: x_test, y: y_test})
print(epoch, "Test accuracy:", acc_test)
if acc_test > acc:
print('saving model: {}'.format(epoch))
acc = acc_test
saver.save(sess, "./models/mnist_cnn_tf/mnist_cnn_tf")