-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathevaluation.py
174 lines (136 loc) · 5.21 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# -*- coding: utf-8 -*-
import numpy as np
import argparse
def diff_model_label(dataset, precision, recall, models, labels, seq_len):
reverse_tag = {v: k for k, v in dataset.necessary_data["ner_tag"].items()}
for index, model, label in zip(range(0, len(models)), models, labels):
modelAnswer = get_ner_tag_list_by_numeric(reverse_tag, model, seq_len[index])
labelAnswer = get_ner_tag_list_by_numeric(reverse_tag, label, seq_len[index])
recall += calculation_correct(modelAnswer, labelAnswer)
precision += calculation_correct(labelAnswer, modelAnswer)
return precision, recall
def calculation_measure(num_model, precision, recall):
precisionRate = np.zeros(num_model)
recallRate = np.zeros(num_model)
f1Measure = np.zeros(num_model)
for i in range(num_model):
if precision[i][1] == 0:
precisionRate[i] = 0.0
else:
precisionRate[i] = precision[i][0] / precision[i][1]
if recall[i][1] == 0:
recallRate[i] = 0.0
else:
recallRate[i] = recall[i][0] / recall[i][1]
if precisionRate[i] + recallRate[i] == 0.0:
f1Measure[i] = 0.0
else:
f1Measure[i] = (2 * precisionRate[i] * recallRate[i]) / (precisionRate[i] + recallRate[i])
return f1Measure, precisionRate, recallRate
def calculation_measure_ensemble(precision, recall):
if precision[1] == 0:
precisionRate = 0.0
else:
precisionRate = precision[0] / precision[1]
if recall[1] == 0:
recallRate = 0.0
else:
recallRate = recall[0] / recall[1]
if precisionRate + recallRate == 0.0:
f1Measure = 0.0
else:
f1Measure = (2 * precisionRate * recallRate) / (precisionRate + recallRate)
return f1Measure, precisionRate, recallRate
def get_ner_bi_tag_list_in_sentence(reverse_tag, result, max_len):
nerAnswer = []
for m in result[:max_len]:
nerTag = reverse_tag[m]
if nerTag == "O" or nerTag == "PAD":
nerAnswer.append("-")
else:
nerAnswer.append(nerTag)
return nerAnswer
def get_ner_tag_list_by_numeric(reverse_tag, result, max_len):
nerAnswer = []
nerRange = -1
nerPrev = ""
for i, m in enumerate(result[:max_len], start=1):
if m == 1 or m == 0:
if nerRange > -1:
nerAnswer.append(str(nerRange) + ":" + str(i - 1) + "_" + nerPrev)
nerRange = -1
else:
nerTag, nerBI = reverse_tag[m].split("_")
if nerBI == "B" or nerPrev != nerTag:
if nerRange > -1:
nerAnswer.append(str(nerRange) + ":" + str(i - 1) + "_" + nerPrev)
nerRange = i
nerPrev = nerTag
return nerAnswer
def get_ner_tag_list_by_string(results):
nerAnswers = []
nerRange = -1
nerPrev = ""
for result in results:
nerAnswer = []
for i, tag in enumerate(result, start=1):
if tag == "-":
if nerRange > -1:
nerAnswer.append(str(nerRange) + ":" + str(i - 1) + "_" + nerPrev)
nerRange = -1
else:
nerTag, nerBI = tag.split("_")
if nerBI == "B" or nerPrev != nerTag:
if nerRange > -1:
nerAnswer.append(str(nerRange) + ":" + str(i - 1) + "_" + nerPrev)
nerRange = i
nerPrev = nerTag
nerAnswers.append(nerAnswer)
return nerAnswers
def read_prediction(prediction_file):
pred_array = []
for line in open(prediction_file, "r", encoding="utf-8"):
line = line.strip()
line = eval(line)
pred_array.append(line)
return pred_array
def read_ground_truth(ground_truth_file):
gt_array = []
for line in open(ground_truth_file, "r", encoding="utf-8"):
line = line.strip()
if line == "":
gt_array.append([])
else:
gt_array.append(line.split(" "))
return gt_array
def evaluation_metrics(prediction_file: str, ground_truth_file: str):
# read prediction and ground truth from file
prediction = read_prediction(prediction_file)
prediction = get_ner_tag_list_by_string(prediction)
ground_truth = read_ground_truth(ground_truth_file)
return evaluate(prediction, ground_truth)
def evaluate(prediction, ground_truth):
precision = np.array([0., 0.])
recall = np.array([0., 0.])
for pred, gt in zip(prediction, ground_truth):
evaluate_by_tag_loc(precision, recall, pred, gt)
f1, _, _ = calculation_measure(precision, recall)
return f1
def evaluate_by_tag_loc(precision, recall, models, labels):
recall += calculation_correct(models, labels)
precision += calculation_correct(labels, models)
return precision, recall
def calculation_correct(target, diff):
value = [0., 0.]
if isinstance(target, dict):
for key in target:
for nerRange in target[key]:
value[1] += 1
if key in diff and nerRange in diff[key]:
value[0] += 1
elif isinstance(target, list):
for ner in target:
value[1] += 1
if ner in diff:
value[0] += 1
return np.array(value)