-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathqlearning.py
300 lines (249 loc) · 10.6 KB
/
qlearning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import numpy as np
import collections
import random
import layers
import utils
class Ase(layers.GenericLayer):
def __init__(self, state_size, delta, weights = 'zeros', learning_rate=0.1, sigma = 1):
self.input_size = state_size
self.W = utils.define_weights(weights, state_size, 1)
self.sigma = sigma
self.learning_rate = learning_rate
self.delta = delta
self.e = 0
def forward(self, x, update = False):
self.x = x
self.y = np.sign(self.W.dot(x)+np.random.normal(0,self.sigma))
self.e = self.delta*self.e+(1-self.delta)*self.y*self.x
return utils.to_one_hot_vect(self.y/2.0+1.0,2)
def reinforcement(self, x, r): #r>1 success e r<1 fail
self.W += self.learning_rate * r * self.e
return self.forward(x)
class Ace(layers.GenericLayer):
def __init__(self, state_size, delta, weights ='zeros', learning_rate = 0.1, gamma = 0.95):
self.input_size = state_size
self.W = utils.define_weights(weights, state_size, 1)
self.gamma = gamma
self.learning_rate = learning_rate
self.delta = delta
self.p = 0
self.e = 0
self.y = 0
def forward(self, x, update = False):
return self.step(x,0)
def reinforcement(self, x, r): #r>1 success e r<1 fail
return self.step(x,r)
def step(self, x, r):
self.x = x
self.y = self.gamma*self.W.dot(x)-self.p
self.e = self.delta*self.e+(1-self.delta)*self.x # always positive
self.p = self.W.dot(x)
self.W += self.learning_rate * (r + self.y) * self.e
return self.y
class AseAce(layers.GenericLayer):
def __init__(self, state_size, delta, weights = 'zeros', learning_rate=0.1, sigma = 1, gamma = 0.95):
self.ase = Ase(state_size, delta, weights, learning_rate, sigma)
self.ace = Ace(state_size, delta, weights, learning_rate, gamma)
def forward(self, x, update = False):
self.x = x
return self.ase.reinforcement(x, self.ace.reinforcement(x, 0))
def reinforcement(self, x, r):
self.x = x
return self.ase.reinforcement(x, r+self.ace.reinforcement(x, r))
class Agent(layers.GenericLayer):
def __init__(self, state_size, action_size, learning_rate = 0.1, gamma = 0.95, policy = 'esp-greedy', epsilon = 0.3, sigma = 1):
self.Q = utils.define_weights('zeros', state_size, action_size)
self.action_size = action_size
self.learning_rate = learning_rate
self.epsilon = epsilon
self.gamma = gamma
self.sigma = sigma
self.y = 0
self.x = 0
self.policies = {
'greedy' : self.greedy,
'esp-greedy' : self.eps_greedy,
'gaussian' : self.gaussian,
'softmax' : self.softmax
}
self.policy = self.policies.get(policy)
def greedy(self, x):
self.y = np.argmax(self.Q[:,x])
return self.y
def eps_greedy(self, x):
if np.random.rand(1,1) < self.epsilon:
self.y = int(np.random.rand(1,1)*self.Q[:,x].size)
else:
self.y = np.argmax(self.Q[:,x])
return self.y
def gaussian(self, x):
self.y = np.argmax(self.Q[:,x]+np.random.normal(0,self.sigma,size=self.Q[:,x].size))
return self.y
def softmax(self, x):
raise Exception('Not Implemented!')
def forward(self, x, update = False):
self.x = np.argmax(x)
return utils.to_one_hot_vect(self.policy(self.x),self.action_size)
def reinforcement(self, x, r):
self.Q[self.y,self.x] += self.learning_rate*(r+self.gamma*np.max(self.Q[:,np.argmax(x)])-self.Q[self.y,self.x])
return self.forward(x)
#Generic Agent
#When the agent receive a reward, it performs a training.
class GenericAgent(layers.GenericLayer):
def __init__(self, model, action_size, memory_size, pole):
self.model = model
self.action_size = action_size
self.memory_size = memory_size
self.states_history = collections.deque(maxlen = memory_size)
self.command_history = collections.deque(maxlen = memory_size)
self.e = np.tile(np.exp(-pole*np.linspace(0,1,memory_size)),(action_size,1)).T
self.command = np.zeros(action_size)
# self.target_history = np.zeros_like(self.e)
def set_training_options(self, trainer, loss, optimizer):
self.trainer = trainer
self.loss = loss
self.optimiser = optimizer
# def reinforcement(self, state, reinforcement):
# self.states_history.append(state)
# self.command_history.append(self.command)
# self.target_history = np.roll(self.target_history,1,axis=0)
# self.target_history[0,:] = np.zeros([1,self.output_size])
# if reinforcement != 0:
# self.target_history += reinforcement*np.multiply(self.e,np.array(self.command_history))
# # print zip(np.argmax(self.command_history,axis=1),self.target_history)
#
# if len(self.command_history) >= self.memory_size:
# self.trainer.learn_minibatch(
# self.net,
# zip(self.states_history,self.target_history),
# self.loss,
# self.optimiser,
# )
# #self.command_history.clear()
#
# self.command = to_one_hot_vect(np.argmax(self.net.forward(state)),self.output_size)
# return self.command
def forward(self, x, update = False):
self.states_history.append(x)
self.command_history.append(self.command)
self.command = utils.to_one_hot_vect(np.argmax(self.model.forward(x)),self.action_size)
return self.command
def reinforcement(self, x, r):
self.states_history.append(x)
self.command_history.append(self.command)
if len(self.command_history) >= self.memory_size:
# print np.argmax(self.command_history,axis=1)
if r != 0:
self.target = r*np.multiply(self.e,np.array(self.command_history))
# self.target = r*np.array(self.command_history)
self.trainer.learn_minibatch(
self.model,
zip(self.states_history,self.target),
self.loss,
self.optimiser,
)
self.command = utils.to_one_hot_vect(np.argmax(self.model.forward(x,True)),self.action_size)
return self.command
def clear(self):
self.command_history.clear()
#Appunti
#Q function e' la rete quindi io mi posso salvare lo stato che e' un input
#e poi l'uscita mi da l'azione migliore trovata fino a quel momento
class DeepAgent(layers.GenericLayer):
def __init__(self, Q, Q_hat, replay_memory_size, minibatch_size = 100, learning_rate = 0.1, gamma = 1, policy = 'eps-greedy', epsilon = 0.3, sigma = 0.5):
self.Q = Q
self.Q_hat = Q_hat
self.D_size = replay_memory_size
self.D = collections.deque(maxlen = replay_memory_size)
self.minibatch_size = minibatch_size
self.learning_rate = learning_rate
self.epsilon = epsilon
self.gamma = gamma
self.sigma = sigma
self.x = 0
self.Q_out = 0
self.action = 0
self.policies = {
'greedy' : self.greedy,
'eps-greedy' : self.eps_greedy,
'gaussian' : self.gaussian,
'softmax' : self.softmax
}
self.policy = self.policies.get(policy)
def greedy(self, x):
self.Q_out = self.Q.forward(x)
self.action = np.argmax(self.Q_out)
return self.action
def eps_greedy(self, x):
self.Q_out = self.Q.forward(x)
if np.random.rand(1,1) < self.epsilon:
self.action = int(np.random.rand(1,1)*self.Q_out.size)
else:
self.action = np.argmax(self.Q_out)
return self.action
def gaussian(self, x):
self.Q_out = self.Q.forward(x)
self.action = np.argmax(self.Q_out+np.random.normal(0,self.sigma,size=self.Q_out.size))
return self.action
def softmax(self, x):
raise Exception('Not Implemented!')
def set_training_options(self, trainer, loss, optimiser):
self.trainer = trainer
self.loss = loss
self.optimiser = optimiser
#sei in uno stato, valuti tutte le possibili mosse che possono essere fatte
#per ogni mossa chiami la rete e ottieni la probabilita di vittoria
#te la salvi in un vettore azioni
def forward(self, x, update = False):
self.x = x
self.action = self.policy(self.x)
return self.action
def reinforcement(self, x, r, done):
self.D.append((self.x, self.action, r, x, done))
J_train_list = 0
dJdy_list = 0
if len(self.D) < self.minibatch_size:
return J_train_list, dJdy_list
minibatch = random.sample(self.D, self.minibatch_size)
#y is the target of the loss function
y = []
Q_out = []
states = []
for state, action, reward, next_state, done, in minibatch:
states.append(state)
#y_val = self.Q_hat.forward(state)
Q_out_val = self.Q.forward(state)#*utils.to_one_hot_vect(action,self.Q_out.size)
Q_out.append(Q_out_val)
if done == False:
# yj = r(t) + gamma * max_action(Q_hat(x(t+1),action))
yj = reward + self.gamma * np.max(self.Q.forward(next_state))
else:
# yj = r(t)
yj = reward
# yj = self.Q_hat.forward(next_state)
y_val = Q_out_val.copy()
y_val[action] = yj
# print (Q_out_val,y_val,action,yj)
# y_val = yj*utils.to_one_hot_vect(action,self.Q_out.size)
y.append(y_val)
# J_train_list, dJdy_list = self.trainer.learn_minibatch(
# self.Q,
# zip(states,y),
# self.loss,
# self.optimiser,
# )
J = self.loss.loss(Q_out_val,y_val)/self.minibatch_size
dJdy = self.loss.dJdy_gradient(Q_out_val,y_val)/self.minibatch_size
self.Q.backward(dJdy, self.optimiser)
J_train_list += np.linalg.norm(J)
dJdy_list += np.linalg.norm(dJdy)
self.optimiser.update_model()
#print len(states)
# print (np.array(y),np.array(Q_out))
# print np.max(np.array(y)-np.array(Q_out))
#y = [minibatch[2][ind] + self.gamma * np.max(self.Q_hat.forward(minibatch[3][ind])) if done == 0 else minibatch[2][ind] for ind,done in enumerate(minibatch[4])]
# states = np.random.rand(100,2)
# y = []
# for x in states:
# y.append(self.Q_hat.forward(x))
return J_train_list, dJdy_list