-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
155 lines (139 loc) · 5.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import time
import hydra
import pytorch_lightning as pl
import wandb
import yaml
from hydra.utils import to_absolute_path
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning.callbacks import (
LearningRateMonitor,
ModelCheckpoint,
EarlyStopping,
)
from pytorch_lightning.loggers import WandbLogger, CSVLogger
from datamodules.babelnet_dm import BabelNetDataModule
from models.model import BabelNetTransformer
@hydra.main(config_path="configs", config_name="train")
def main(cfg: DictConfig):
pl.seed_everything(cfg.seed, workers=True)
loggers = [init_wandb(cfg)] if cfg.logger.name == "wandb" else []
loggers.append(CSVLogger("csv_logs"))
babelnet_dm = BabelNetDataModule(
model_name=cfg.model.encoder_name,
alpha=cfg.dataset.alpha,
batch_size=cfg.dataset.batch_size,
train_path=to_absolute_path(cfg.dataset.dir),
val_bli_file=cfg.val.bli_file,
sel_langs=cfg.dataset.sel_langs,
input_type=cfg.model.input_type,
val_train_overlap=cfg.dataset.val_train_overlap,
vocab_dir=cfg.val.vocab_dir,
)
babelnet_model = BabelNetTransformer(
model_name=cfg.model.encoder_name,
training_type=cfg.model.training_type,
learning_rate=cfg.model.learning_rate,
loss=cfg.model.loss,
similarity=cfg.model.similarity,
word_repr_type=cfg.model.word_repr_type,
reduction_factor=cfg.model.adapter.reduction_factor,
max_epochs=cfg.trainer.max_epochs,
warmup_peak=cfg.model.warmup_peak,
temperature=cfg.model.temperature,
checkpoint_file=cfg.model.checkpoint_file,
layerwise_averaging=cfg.model.layerwise_averaging,
weight_decay=cfg.model.weight_decay,
)
gpu_id = [cfg.trainer.gpus]
print(f"Using GPU {gpu_id[0]} as requested.")
callbacks = []
if babelnet_model.warmup_peak != -1:
callbacks.append(LearningRateMonitor(logging_interval="step"))
print(f"Logging learning rate.")
trainer = pl.Trainer(
gpus=gpu_id,
max_epochs=cfg.trainer.max_epochs,
log_every_n_steps=cfg.trainer.log_every_n_steps,
max_steps=cfg.trainer.max_steps,
num_sanity_val_steps=cfg.trainer.num_sanity_val_steps,
fast_dev_run=cfg.trainer.fast_dev_run,
check_val_every_n_epoch=cfg.trainer.check_val_every_n_epoch,
val_check_interval=cfg.trainer.val_check_interval,
deterministic=cfg.trainer.deterministic,
logger=loggers,
callbacks=callbacks,
enable_checkpointing=False,
overfit_batches=cfg.trainer.overfit_batches,
limit_train_batches=cfg.trainer.limit_train_batches,
accumulate_grad_batches=cfg.trainer.accumulate_grad_batches,
)
if cfg.val_only:
print("--- Validation only ---")
trainer.validate(babelnet_model, datamodule=babelnet_dm)
if not cfg.val_only:
if cfg.trainer.ckpt_flag:
print("Checkpoint saving activated.")
mode = "max"
metric = "val/mrr_bli_tr_avg_diff"
checkpoint_callback = ModelCheckpoint(
monitor=metric,
mode=mode,
dirpath=cfg.checkpoint_path,
filename=f"epoch_{{epoch}}-step_{{step}}-mrr_avg_diff"
+ f"_{{{metric}:.2f}}",
auto_insert_metric_name=False,
)
trainer.callbacks.append(checkpoint_callback)
if cfg.trainer.patience != -1:
print(
f"Using early stopping with patience {cfg.trainer.patience} and min improvement of {cfg.trainer.min_delta}"
)
metric = "val/mrr_bli_tr_avg_diff"
trainer.callbacks.append(
EarlyStopping(
monitor=metric,
min_delta=cfg.trainer.min_delta,
patience=cfg.trainer.patience,
verbose=True,
mode=mode,
)
)
trainer.callbacks.append(LogEarlyStopping())
trainer.fit(babelnet_model, datamodule=babelnet_dm)
if cfg.trainer.ckpt_flag:
print(f" +++ Best checkpoint path {checkpoint_callback.best_model_path}")
if cfg.logger.name == "wandb":
wandb.config.update(
{"best_model_path": checkpoint_callback.best_model_path}
)
if cfg.logger.name == "wandb":
wandb.finish()
time.sleep(180)
print("***** Training Finished *****")
def init_wandb(cfg):
yaml_dict = yaml.load(OmegaConf.to_yaml(cfg), Loader=yaml.FullLoader)
run_name = f"{cfg.model.encoder_name}_lr_{str(cfg.model.learning_rate)}_alpha_{cfg.dataset.alpha}_batch_{cfg.dataset.batch_size}"
group = cfg.logger.group
logger = WandbLogger(
project=cfg.logger.project,
log_model=cfg.logger.upload_checkpoints,
name=run_name,
config=yaml_dict,
group=group,
)
if group is not None:
print(f"Run belongs to group {group}")
if cfg.logger.upload_checkpoints is True or cfg.logger.upload_checkpoints == "all":
print("Uploading checkpoints to W&B.")
return logger
class LogEarlyStopping(pl.Callback):
def on_train_batch_end(self, trainer, pl_module, *args):
early_stopping_callbacks = [
c for c in trainer.callbacks if isinstance(c, EarlyStopping)
]
if early_stopping_callbacks:
for c in early_stopping_callbacks:
c.monitor
self.log(f"{c.monitor}_best", c.best_score)
if __name__ == "__main__":
main()