-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
556 lines (436 loc) · 20.3 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
import torch
import torchvision
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import torch.nn.functional as F
import os
import time
import shutil
from tqdm import tqdm
from utils import accuracy, AverageMeter
from models import resnet_model
from tensorboard_logger import configure, log_value
from loss import ApproximateKLLoss
class Trainer(object):
def __init__(self, config, data_loader):
self.config = config
# data params
if config.is_train:
self.train_loader = data_loader[0]
self.valid_loader = data_loader[1]
self.num_train = len(self.train_loader[0].dataset)
print('[trainer.py] P0D0:', self.num_train)
self.num_valid = len(self.valid_loader.dataset)
self.total_train = sum([len(self.train_loader[j].dataset) for j in range(config.model_num)])
else:
self.test_loader = data_loader
self.num_test = len(self.test_loader.dataset)
self.num_classes = config.num_classes
# training params
self.epochs = config.epochs
self.start_epoch = 0
self.momentum = config.momentum
self.lr = config.init_lr
self.weight_decay = config.weight_decay
self.nesterov = config.nesterov
self.gamma = config.gamma
# misc params
self.use_gpu = config.use_gpu
self.best = config.best
self.ckpt_dir = config.ckpt_dir
self.logs_dir = config.logs_dir
self.use_tensorboard = config.use_tensorboard
self.resume = config.resume
self.model_name = config.save_name
self.model_num = config.model_num
self.models = []
self.optimizers = []
self.schedulers = []
self.loss_kl = ApproximateKLLoss()
self.loss_ce = nn.CrossEntropyLoss()
self.best_valid_accs = [0.] * self.model_num
self.alpha = 200 # hyperparameter to balance between KL loss and CE loss [sum of multipliers of KL loss]
self.alphas = [{i: self.alpha / (self.model_num - 1) for i in list(set(list(range(self.model_num))) - set([j, ]))} for j in range(self.model_num)]
self.T = 5.0 # temperature hyperparameter
# tensorboard logging
if self.use_tensorboard:
tensorboard_dir = self.logs_dir + self.model_name
print('[*] Saving tensorboard logs to {}'.format(tensorboard_dir))
if not os.path.exists(tensorboard_dir):
os.makedirs(tensorboard_dir)
configure(tensorboard_dir)
for i in range(self.model_num):
# models
model = resnet_model()
if self.use_gpu:
model.cuda()
self.models.append(model) # ResNet18
# initialize optimizer and scheduler
optimizer = optim.SGD(model.parameters(), lr=self.lr, momentum=self.momentum,
weight_decay=self.weight_decay, nesterov=self.nesterov)
self.optimizers.append(optimizer)
# set learning rate decay
scheduler = optim.lr_scheduler.MultiStepLR(self.optimizers[i], milestones=[50, 75], gamma=self.gamma)
self.schedulers.append(scheduler)
print('[*] Number of parameters of one model: {:,}'.format(
sum([p.data.nelement() for p in self.models[0].parameters()])))
self.num_train = self.num_train if config.is_train else self.num_test
def train(self):
# to load the most recent checkpoint
if self.resume:
self.load_checkpoint(best=False)
print("\n[*] Train on {} samples, validate on {} samples".format(
self.num_train, self.num_valid)
)
for epoch in range(self.start_epoch, self.epochs):
print(
'\nEpoch: {}/{} - LR: {:.6f}'.format(
epoch + 1, self.epochs, self.optimizers[0].param_groups[0]['lr'], )
)
# train for one epoch locally using only CE loss
train_losses, train_accs = self.train_local(epoch)
# evaluate on validation set
valid_losses, valid_accs = self.validate_local(epoch)
for scheduler in self.schedulers:
scheduler.step()
for i in range(self.model_num):
is_best = valid_accs[i].avg > self.best_valid_accs[i]
msg1 = "model_{:d}: train loss: {:.3f} - train acc: {:.3f} "
msg2 = "- val loss: {:.3f} - val acc: {:.3f}"
if is_best:
msg2 += " [*]"
msg = msg1 + msg2
print(msg.format(i + 1, train_losses[i].avg, train_accs[i].avg, valid_losses[i].avg, valid_accs[i].avg))
self.best_valid_accs[i] = max(valid_accs[i].avg, self.best_valid_accs[i])
self.save_checkpoint(i, {'epoch': epoch + 1, 'model_state': self.models[i].state_dict(),
'optim_state': self.optimizers[i].state_dict(),
'best_valid_acc': self.best_valid_accs[i], }, is_best)
# validation recording
print("Validation after Local Training: ")
self.test_evaluation()
if self.start_epoch < self.epochs: self.start_epoch = self.epochs
# additional section for CaPriDe part
for epoch in range(self.start_epoch, int(self.epochs + 3 * self.epochs)):
print(
'\nEpoch: {}/{} - LR: {:.6f}'.format(
epoch + 1, self.epochs * 4, self.optimizers[0].param_groups[0]['lr'], )
)
if 'ind' in self.model_name: # to train locally
train_losses, train_accs = self.train_local(epoch)
valid_losses, valid_accs = self.validate_local(epoch)
elif 'capride' in self.model_name: # collaborative learning
train_losses, train_accs = self.train_capride(epoch)
valid_losses, valid_accs = self.validate_capride(epoch)
for scheduler in self.schedulers:
scheduler.step()
for i in range(self.model_num):
is_best = valid_accs[i].avg > self.best_valid_accs[i]
msg1 = "model_{:d}: train loss: {:.3f} - train acc: {:.3f} "
msg2 = "- val loss: {:.3f} - val acc: {:.3f}"
if is_best:
msg2 += " [*]"
msg = msg1 + msg2
print(msg.format(i + 1, train_losses[i].avg, train_accs[i].avg, valid_losses[i].avg, valid_accs[i].avg))
self.best_valid_accs[i] = max(valid_accs[i].avg, self.best_valid_accs[i])
self.save_checkpoint(i, {'epoch': epoch + 1, 'model_state': self.models[i].state_dict(),
'optim_state': self.optimizers[i].state_dict(),
'best_valid_acc': self.best_valid_accs[i], }, is_best)
print("Validation after CaPriDe Training: ")
self.test_evaluation()
def test(self):
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# whether to load the best checkpoint
self.load_checkpoint(best=self.best)
for i in range(self.model_num):
self.models[i].eval()
for _, (images, labels) in enumerate(self.test_loader):
if self.use_gpu:
images, labels = images.cuda(), labels.cuda()
images, labels = Variable(images), Variable(labels)
# forward pass
outputs = self.models[i](images)
loss = self.loss_ce(outputs, labels) # cross entropy
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, labels.data, topk=(1, 5))
losses.update(loss.item(), images.size()[0])
top1.update(prec1.item(), images.size()[0])
top5.update(prec5.item(), images.size()[0])
print(
'[*] Test loss: {:.3f}, top1_acc: {:.3f}%, top5_acc: {:.3f}%'.format(
losses.avg, top1.avg, top5.avg)
)
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
def save_checkpoint(self, i, state, is_best):
filename = self.model_name + str(i + 1) + '_ckpt.pth.tar'
ckpt_path = os.path.join(self.ckpt_dir, filename)
torch.save(state, ckpt_path)
if is_best:
filename = self.model_name + str(i + 1) + '_model_best.pth.tar'
shutil.copyfile(
ckpt_path, os.path.join(self.ckpt_dir, filename)
)
def load_checkpoint(self, best=False):
print("[*] Loading model from {}".format(self.ckpt_dir))
for i in range(self.model_num):
model_id = i + 1
filename = self.model_name + f'{model_id}_ckpt.pth.tar'
if best:
filename = self.model_name + f'{model_id}_model_best.pth.tar'
ckpt_path = os.path.join(self.ckpt_dir, filename)
ckpt = torch.load(ckpt_path)
# load variables from checkpoint
self.start_epoch = ckpt['epoch']
self.best_valid_acc = ckpt['best_valid_acc']
self.models[i].load_state_dict(ckpt['model_state'])
self.optimizers[i].load_state_dict(ckpt['optim_state'])
if best:
print(
"[*] Loaded {} checkpoint @ epoch {} "
"with best valid acc of {:.3f}".format(
filename, ckpt['epoch'], ckpt['best_valid_acc'])
)
else:
print(
"[*] Loaded {} checkpoint @ epoch {}".format(
filename, ckpt['epoch'])
)
def test_evaluation(self):
"""
To evaluate models on validation set
"""
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
for i in range(self.model_num):
self.models[i].eval()
for _, (images, labels) in enumerate(self.valid_loader):
if self.use_gpu:
images, labels = images.cuda(), labels.cuda()
images, labels = Variable(images), Variable(labels)
# forward pass
outputs = self.models[i](images)
loss = self.loss_ce(outputs, labels)
# measure accuracy and record loss
prec1, prec5 = accuracy(outputs.data, labels.data, topk=(1, 5))
losses.update(loss.item(), images.size()[0])
top1.update(prec1.item(), images.size()[0])
top5.update(prec5.item(), images.size()[0])
print(
'[*] P{}. Validation loss: {:.3f}, top1_acc: {:.3f}%, top5_acc: {:.3f}%'.format(
i, losses.avg, top1.avg, top5.avg)
)
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
def train_local(self, epoch):
"""
To train models locally [no collaboration].
Args:
epoch (int): current epoch
Returns:
losses: AverageMeter class object
accs: AverageMeter class object
"""
batch_time = AverageMeter()
losses = []
accs = []
for i in range(self.model_num):
self.models[i].train()
losses.append(AverageMeter())
accs.append(AverageMeter())
tic = time.time()
with tqdm(total=self.total_train) as pbar:
for i in range(self.model_num):
for k, (images, labels) in enumerate(self.train_loader[i]):
if self.use_gpu:
images, labels = images.cuda(), labels.cuda()
images, labels = Variable(images), Variable(labels)
# forward pass
output = self.models[i](images)
loss = self.loss_ce(output, labels)
# measure accuracy and record loss
prec = accuracy(output.data, labels.data, topk=(1,))[0]
losses[i].update(loss.item(), images.size()[0])
accs[i].update(prec.item(), images.size()[0])
# compute gradients and update SGD
self.optimizers[i].zero_grad()
loss.backward()
self.optimizers[i].step()
# newly added
torch.cuda.empty_cache()
# measure elapsed time
toc = time.time()
batch_time.update(toc - tic)
pbar.set_description(
(
"{:.1f}s - model{}_loss: {:.3f} - model{}_acc: {:.3f}".format(
(toc - tic), i + 1, losses[i].avg, i + 1, accs[i].avg
)
)
)
self.batch_size = images.shape[0]
pbar.update(self.batch_size)
if self.use_tensorboard:
iteration = epoch * len(self.train_loader[i]) + k
log_value('train_loss_%d' % (i + 1), losses[i].avg, iteration)
log_value('train_acc_%d' % (i + 1), accs[i].avg, iteration)
return losses, accs
# validation of individually trained models
def validate_local(self, epoch):
"""
To validate models locally [no collaboration].
Args:
epoch (int): current epoch
Returns:
losses: AverageMeter class object
accs: AverageMeter class object
"""
losses = []
accs = []
for i in range(self.model_num):
self.models[i].eval()
losses.append(AverageMeter())
accs.append(AverageMeter())
for i, (images, labels) in enumerate(self.valid_loader):
if self.use_gpu:
images, labels = images.cuda(), labels.cuda()
images, labels = Variable(images), Variable(labels)
# forward pass
outputs = []
for model in self.models:
outputs.append(model(images))
for i in range(self.model_num):
loss = self.loss_ce(outputs[i], labels)
# measure accuracy and record loss
prec = accuracy(outputs[i].data, labels.data, topk=(1,))[0]
losses[i].update(loss.item(), images.size()[0])
accs[i].update(prec.item(), images.size()[0])
# newly added
torch.cuda.empty_cache()
# log to tensorboard for every epoch
if self.use_tensorboard:
for i in range(self.model_num):
log_value('valid_loss_%d' % (i + 1), losses[i].avg, epoch + 1)
log_value('valid_acc_%d' % (i + 1), accs[i].avg, epoch + 1)
return losses, accs
# train CaPriDe
def train_capride(self, epoch):
"""
To train models collaboratively [CaPriDe Learning].
Args:
epoch (int): current epoch
Returns:
losses: AverageMeter class object
accs: AverageMeter class object
"""
batch_time = AverageMeter()
losses = []
kl_losses = []
accs = []
for i in range(self.model_num):
self.models[i].train()
losses.append(AverageMeter())
accs.append(AverageMeter())
kl_losses.append(AverageMeter())
tic = time.time()
with tqdm(total=self.total_train) as pbar:
for i in range(self.model_num):
for k, (images, labels) in enumerate(self.train_loader[i]):
if self.use_gpu:
images, labels = images.cuda(), labels.cuda()
images, labels = Variable(images), Variable(labels)
# forward pass
outputs = []
for model in self.models:
outputs.append(model(images))
ce_loss = self.loss_ce(outputs[i], labels)
kl_loss = 0
for j in range(self.model_num):
if i != j:
current_loss = self.loss_kl(outputs[i], outputs[j].detach())
kl_loss += self.alphas[i][j] * current_loss
kl_loss = kl_loss / (self.model_num - 1)
loss = ce_loss + kl_loss
# measure accuracy and record loss
prec = accuracy(outputs[i].data, labels.data, topk=(1,))[0]
losses[i].update(loss.item(), images.size()[0])
accs[i].update(prec.item(), images.size()[0])
kl_losses[i].update(kl_loss, images.size()[0])
# compute gradients and update SGD
self.optimizers[i].zero_grad()
loss.backward()
self.optimizers[i].step()
# newly added
torch.cuda.empty_cache()
# measure elapsed time
toc = time.time()
batch_time.update(toc - tic)
pbar.set_description(
(
"{:.1f}s - model{}_loss: {:.3f} - model{}_acc: {:.3f} - klloss: {:.4f}".format(
(toc - tic), i + 1, losses[i].avg, i + 1, accs[i].avg, kl_losses[i].avg
)
)
)
self.batch_size = images.shape[0]
pbar.update(self.batch_size)
if self.use_tensorboard:
iteration = epoch * len(self.train_loader[i]) + k
log_value('train_loss_%d' % (i + 1), losses[i].avg, iteration)
log_value('train_acc_%d' % (i + 1), accs[i].avg, iteration)
log_value('train_kl_loss_%d' % (i + 1), kl_losses[i].avg, iteration)
return losses, accs
# validate CaPriDe training
def validate_capride(self, epoch):
"""
To evaluate models on validation set.
Args:
epoch (int): current epoch
Returns:
losses: AverageMeter class object
accs: AverageMeter class object
"""
losses = []
kl_losses = []
accs = []
for i in range(self.model_num):
self.models[i].eval()
losses.append(AverageMeter())
accs.append(AverageMeter())
kl_losses.append(AverageMeter())
for _, (images, labels) in enumerate(self.valid_loader):
if self.use_gpu:
images, labels = images.cuda(), labels.cuda()
images, labels = Variable(images), Variable(labels)
# forward pass
outputs = []
for model in self.models:
outputs.append(model(images))
for i in range(self.model_num):
ce_loss = self.loss_ce(outputs[i], labels)
kl_loss = 0
for j in range(self.model_num):
if i != j:
current_loss = self.loss_kl(outputs[i], outputs[j].detach())
kl_loss += self.alphas[i][j] * current_loss
kl_loss = kl_loss / (self.model_num - 1)
loss = ce_loss + kl_loss
# measure accuracy and record loss
prec = accuracy(outputs[i].data, labels.data, topk=(1,))[0]
losses[i].update(loss.item(), images.size()[0])
accs[i].update(prec.item(), images.size()[0])
kl_losses[i].update(kl_loss.item(), images.size()[0])
# newly added
torch.cuda.empty_cache()
# log to tensorboard for every epoch
if self.use_tensorboard:
for i in range(self.model_num):
log_value('valid_loss_%d' % (i + 1), losses[i].avg, epoch + 1)
log_value('valid_acc_%d' % (i + 1), accs[i].avg, epoch + 1)
log_value('valid_kl_loss_%d' % (i + 1), kl_losses[i].avg, epoch + 1)
return losses, accs