forked from caichengyi/SMM
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinstancewise_vp.py
167 lines (148 loc) · 7.14 KB
/
instancewise_vp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from functools import partial
from torch.nn import functional as F
from torch.cuda.amp import autocast, GradScaler
from torchvision import transforms
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import argparse
import sys
sys.path.append(".")
from data import IMAGENETNORMALIZE, prepare_additive_data
from labelmapping import generate_label_mapping_by_frequency, label_mapping_base
from instance_model import InstancewiseVisualPrompt
from cfg import *
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument('--network', choices=["resnet18", "resnet50", "ViT_B32"], default="resnet18")
p.add_argument('--seed', type=int, default=0)
p.add_argument('--dataset',
choices=["cifar10", "cifar100", "gtsrb", "svhn"], default="cifar10")
p.add_argument('--patch_size', type=int, default=8)
p.add_argument('--attribute_channels', type=int, default=3)
p.add_argument('--mapping_method', type=str, default='ilm')
args = p.parse_args()
device = "cuda:0" if torch.cuda.is_available() else "cpu"
set_seed(args.seed)
attribute_layers, epochs, lr, attr_lr, attr_gamma = get_config(args.network)
save_path = os.path.join(results_path, args.dataset + args.network + args.mapping_method + str(args.seed) + str(args.attribute_channels) + str(attribute_layers) + str(args.patch_size))
if args.network == "ViT_B32":
imgsize = 384
else:
imgsize = 224
# Data
train_preprocess = transforms.Compose([
transforms.Resize((imgsize + 32, imgsize + 32)),
transforms.RandomCrop(imgsize),
transforms.RandomHorizontalFlip(),
transforms.Lambda(lambda x: x.convert('RGB') if hasattr(x, 'convert') else x),
transforms.ToTensor(),
transforms.Normalize(IMAGENETNORMALIZE['mean'], IMAGENETNORMALIZE['std']),
])
test_preprocess = transforms.Compose([
transforms.Resize((imgsize, imgsize)),
transforms.Lambda(lambda x: x.convert('RGB') if hasattr(x, 'convert') else x),
transforms.ToTensor(),
transforms.Normalize(IMAGENETNORMALIZE['mean'], IMAGENETNORMALIZE['std']),
])
loaders, class_names = prepare_additive_data(args.dataset, data_path=data_path, preprocess=train_preprocess,
test_process=test_preprocess)
# Network
if args.network == "resnet18":
from torchvision.models import resnet18, ResNet18_Weights
network = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1).to(device)
elif args.network == "resnet50":
from torchvision.models import resnet50, ResNet50_Weights
network = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2).to(device)
elif args.network == "ViT_B32":
from pytorch_pretrained_vit import ViT
model_name = 'B_32_imagenet1k'
network = ViT(model_name, pretrained=True).to(device)
else:
raise NotImplementedError(f"{args.network} is not supported")
network.requires_grad_(False)
network.eval()
# Visual Prompt
visual_prompt = InstancewiseVisualPrompt(imgsize, attribute_layers, args.patch_size, args.attribute_channels).to(device)
# optimizers
optimizer = torch.optim.Adam([{'params': visual_prompt.program, 'lr': lr}])
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[int(0.5 * epochs), int(0.72 * epochs)],
gamma=0.1)
optimizer_att = torch.optim.Adam([{'params': visual_prompt.priority.parameters(), 'lr': attr_lr}])
scheduler_att = torch.optim.lr_scheduler.MultiStepLR(optimizer_att,
milestones=[int(0.5 * epochs), int(0.72 * epochs)],
gamma=attr_gamma)
# Make dir
os.makedirs(save_path, exist_ok=True)
logger = SummaryWriter(save_path)
# label_mapping method
if args.mapping_method == 'rlm':
mapping_sequence = torch.randperm(1000)[:len(class_names)]
label_mapping = partial(label_mapping_base, mapping_sequence=mapping_sequence)
elif args.mapping_method == 'flm':
mapping_sequence = generate_label_mapping_by_frequency(visual_prompt, network, loaders['train'])
label_mapping = partial(label_mapping_base, mapping_sequence=mapping_sequence)
# Train
best_acc = 0.
scaler = GradScaler()
for epoch in range(epochs):
if args.mapping_method == 'ilm':
mapping_sequence = generate_label_mapping_by_frequency(visual_prompt, network, loaders['train'])
label_mapping = partial(label_mapping_base, mapping_sequence=mapping_sequence)
visual_prompt.train()
total_num = 0
true_num = 0
loss_sum = 0
pbar = tqdm(loaders['train'], total=len(loaders['train']),
desc=f"Epo {epoch}", ncols=100)
for x, y in pbar:
if x.get_device() == -1:
x, y = x.to(device), y.to(device)
pbar.set_description_str(f"Epo {epoch}", refresh=True)
optimizer.zero_grad()
optimizer_att.zero_grad()
with autocast():
fx = label_mapping(network(visual_prompt(x)))
loss = F.cross_entropy(fx, y, reduction='mean')
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.step(optimizer_att)
scaler.update()
total_num += y.size(0)
true_num += torch.argmax(fx, 1).eq(y).float().sum().item()
loss_sum += loss.item() * fx.size(0)
pbar.set_postfix_str(f"Acc {100 * true_num / total_num:.2f}%")
scheduler.step()
scheduler_att.step()
logger.add_scalar("train/acc", true_num / total_num, epoch)
logger.add_scalar("train/loss", loss_sum / total_num, epoch)
# Test
visual_prompt.eval()
total_num = 0
true_num = 0
pbar = tqdm(loaders['test'], total=len(loaders['test']), desc=f"Epo {epoch} Testing", ncols=100)
ys = []
for x, y in pbar:
if x.get_device() == -1:
x, y = x.to(device), y.to(device)
ys.append(y)
with torch.no_grad():
fx0 = network(visual_prompt(x))
fx = label_mapping(fx0)
total_num += y.size(0)
true_num += torch.argmax(fx, 1).eq(y).float().sum().item()
acc = true_num / total_num
pbar.set_postfix_str(f"Acc {100 * acc:.2f}%")
logger.add_scalar("test/acc", acc, epoch)
# Save CKPT
state_dict = {
"visual_prompt_dict": visual_prompt.state_dict(),
"epoch": epoch,
"best_acc": best_acc,
"mapping_sequence": mapping_sequence,
}
if acc > best_acc:
best_acc = acc
state_dict['best_acc'] = best_acc
torch.save(state_dict, os.path.join(save_path, 'best.pth'))
torch.save(state_dict, os.path.join(save_path, 'ckpt.pth'))