forked from dsubuntu/SCIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_enhanced_instructions_1.py
73 lines (55 loc) · 1.77 KB
/
generate_enhanced_instructions_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import argparse
import numpy as np
import pandas as pd
from causalnlp import CausalInferenceModel
def binarize_column(data, column):
mean_value = data[column].mean()
return np.where(data[column] > mean_value, 1, 0)
def calculate_ate(df: pd.DataFrame, col_range: range, ignore_cols: list[str]):
results = []
for col_index in col_range:
treatment_col = df.columns[col_index]
df_copy = df.copy()
df_copy[treatment_col] = binarize_column(df_copy, treatment_col)
cm = CausalInferenceModel(
df_copy,
metalearner_type="t-learner",
treatment_col=treatment_col,
outcome_col="Y",
ignore_cols=ignore_cols,
).fit()
ate = cm.estimate_ate()
results.append(ate)
return results
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--data",
type=str,
default="./generated_observational_dataset/causal_judgement-observational_data.csv",
help="Path to the data file",
)
parser.add_argument(
"--col_range",
type=str,
default="1,9",
help="Range of columns to calculate ATE for",
)
parser.add_argument(
"--ignore_cols",
type=str,
default="instruction,input,target,answer-num,LLM_answer,LLM_numeric_answer",
help="Columns to ignore",
)
args = parser.parse_args()
# Load the data
df = pd.read_csv(args.data)
col_range = list(map(int, args.col_range.split(",")))
assert len(col_range) == 2
col_range = range(col_range[0], col_range[1])
ignore_cols = args.ignore_cols.split(",")
# Calculate the ATE
results = calculate_ate(df, col_range, ignore_cols)
print(results)
if __name__ == "__main__":
main()