forked from tyagi-iiitv/PointPillars
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig_v2_2.py
156 lines (123 loc) · 4.27 KB
/
config_v2_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import numpy as np
class GridParameters:
x_min = 0.0
x_max = 80.64
x_step = 0.16
y_min = -40.32
y_max = 40.32
y_step = 0.16
# z_min = -1.0
# z_max = 3.0
z_min = -3.0
z_max = 1.0
# derived parameters
Xn_f = float(x_max - x_min) / x_step
Yn_f = float(y_max - y_min) / y_step
Xn = int(Xn_f)
Yn = int(Yn_f)
def __init__(self, **kwargs):
super(GridParameters, self).__init__(**kwargs)
class DataParameters:
# classes_map = {"Car": 0,
# "Pedestrian": 1,
# "Person_sitting": 1,
# "Cyclist": 2,
# "Truck": 3,
# "Van": 3,
# "Tram": 3,
# "Misc": 3,
# }
# for Car and Pedestrian
# map_classes = {
# 0: "Car",
# 1: "Pedestrian"
# }
# classes_map = {"Car": 0,
# "Pedestrian": 1,
# "Person_sitting": 1,
# # "Cyclist": 2,
# # "Truck": 3,
# # "Van": 3,
# # "Tram": 3,
# # "Misc": 3,
# }
# for Car only
map_classes = {
0: "Car"
}
classes_map = {"Car": 0
}
# # for Pedestrian only
# map_classes = {
# 0: "Pedestrian"
# }
# classes_map = {
# "Pedestrian": 0,
# "Person_sitting": 0,
# }
nb_classes = len(np.unique(list(classes_map.values())))
assert nb_classes == np.max(np.unique(list(classes_map.values()))) + 1, 'Starting class indexing at zero.'
# classes = {"Car": 0,
# "Pedestrian": 1,
# "Person_sitting": 1,
# "Cyclist": 2,
# "Truck": 3,
# "Van": 3,
# "Tram": 3,
# "Misc": 3,
# }
# nb_classes = len(np.unique(list(classes.values())))
# assert nb_classes == np.max(np.unique(list(classes.values()))) + 1, 'Starting class indexing at zero.'
def __init__(self, **kwargs):
super(DataParameters, self).__init__(**kwargs)
class NetworkParameters:
max_points_per_pillar = 100
max_pillars = 12000
nb_features = 9
nb_channels = 64
downscaling_factor = 2
# length (x), width (y), height (z), z-center, orientation
# for car and pedestrian
# anchor_dims = np.array([[3.9, 1.6, 1.56, -1, 0],
# [3.9, 1.6, 1.56, -1, np.pi/2],
# [0.8, 0.6, 1.73, -0.6, 0],
# [0.8, 0.6, 1.73, -0.6, np.pi/2],
# ], dtype=np.float32).tolist()
# for car only
anchor_dims = np.array([[3.9, 1.6, 1.56, -1, 0],
[3.9, 1.6, 1.56, -1, np.pi/2]], dtype=np.float32).tolist()
# for pedestrian only
# anchor_dims = np.array([[0.8, 0.6, 1.73, -0.6, 0],
# [0.8, 0.6, 1.73, -0.6, np.pi/2],
# ], dtype=np.float32).tolist()
nb_dims = 3
# for car
positive_iou_threshold = 0.6
negative_iou_threshold = 0.3
# for pedestrian
# positive_iou_threshold = 0.5
# negative_iou_threshold = 0.35
# batch_size = 1
num_gpus = 1
batch_size = 4
total_training_epochs = 160
# iters_to_decay = 101040. # 15 * 4 * ceil(6733. / 4) --> every 15 epochs on 6733 kitti samples, cf. pillar paper
iters_to_decay = 100500
learning_rate = 2e-4
decay_rate = 1e-8
L1 = 0
L2 = 0
alpha = 0.25
gamma = 2.0
# original pillars paper values
focal_weight = 1.0 # 1.0
loc_weight = 2.0 # 2.0
size_weight = 2.0 # 2.0
angle_weight = 2.0 # 2.0
heading_weight = 0.2 # 0.2
class_weight = 0.5 # 0.2
def __init__(self, **kwargs):
super(NetworkParameters, self).__init__(**kwargs)
class Parameters(GridParameters, DataParameters, NetworkParameters):
def __init__(self, **kwargs):
super(Parameters, self).__init__(**kwargs)