-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMiniImageNet.py
125 lines (111 loc) · 4.95 KB
/
MiniImageNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
import torch
import numpy as np
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
from autoaugment import ImageNetPolicy
from sklearn.model_selection import train_test_split
class MiniImageNet(Dataset):
def __init__(self, images_path, labels_path, mode=False, setname='train', way=5, shot=1, query=15, augmentation=False, augment_rate=0.5):
assert os.path.exists(images_path), "threre is no directory {}".format(images_path)
assert os.path.exists(labels_path), "there is no directory {}".format(labels_path)
self.mode = mode
self.way = way
self.shot = shot
self.query = query
self.augmentation = augmentation
self.augment_rate = augment_rate
# static settings
self.channel = 3
self.size = 84
self.datas = []
self.labels = np.array([])
self.num_classes = -1
with open(os.path.join(labels_path, setname + ".csv")) as f:
# remove first head
lines = f.readlines()[1:]
temp = []
for line in lines:
filename, label = line.strip().split(',')
self.datas.append(os.path.join(images_path, setname, label, filename))
if label not in temp:
temp.append(label)
self.num_classes += 1
self.labels = np.append(self.labels, self.num_classes)
self.labels = torch.from_numpy(self.labels)
self.num_classes += 1
# default transform
self.transform = transforms.Compose([
transforms.Resize(self.size),
transforms.CenterCrop(self.size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# autoaugmentation transform
self.transform_autoaugment = transforms.Compose([
transforms.Resize(self.size),
transforms.CenterCrop(self.size),
ImageNetPolicy(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def __len__(self):
return len(self.datas)
def __getitem__(self, index):
if self.mode:
datas = torch.zeros(len(index) * (self.shot + self.query), self.channel, self.size, self.size)
labels = torch.zeros(len(index) * (self.shot + self.query))
# ways
for p1 in range(len(index)):
# shots
for p2, s in enumerate(index[p1]):
if self.augmentation and self.augment_rate > torch.rand(1):
datas[p1 * (self.shot + self.query) + p2] = self.transform_autoaugment(Image.open(self.datas[s]).convert('RGB'))
else:
datas[p1 * (self.shot + self.query) + p2] = self.transform(Image.open(self.datas[s]).convert('RGB'))
labels[p1 * (self.shot + self.query) + p2] = self.labels[s]
else:
if self.augmentation and self.augment_rate > torch.rand(1):
datas = self.transform_autoaugment(Image.open(self.datas[index]).convert('RGB'))
else:
datas = self.transform(Image.open(self.datas[index]).convert('RGB'))
labels = self.labels[index]
return datas, labels
class CategoriesSampler():
def __init__(self, dataset, iter_size, batch_size, repeat = False):
self.iter_size = iter_size
self.batch_size = batch_size
self.repeat = repeat
self.way = dataset.way
self.shot = dataset.shot
self.query = dataset.query
self.labels = dataset.labels
# compute episode_size (ex. iter: 100, batch: 4 => total 400 episodes)
self.episode_size = self.iter_size * self.batch_size
# reconstruct labels
temp = []
for i in range(int(max(self.labels)) + 1):
temp.append(torch.where(self.labels == i)[0])
self.labels = temp
def __len__(self):
return self.iter_size
def __iter__(self):
for i in range(self.iter_size):
batchs = []
for b in range(self.batch_size):
way = torch.randperm(len(self.labels))[:self.way]
ways = []
for w in way:
shot = self.labels[w]
shot = shot[torch.randperm(len(shot))]
ways.append(shot[:self.shot + self.query])
# repeat datas (ex. [[1, 1, 1, 1, 1], [2, 2, 2, 2, 2], [3, 3, 3, 3, 3],...])
# no repeat datas (ex. [[1, 2, 3,...], [1, 2, 3,...], [1, 2, 3,...],...])
if self.repeat:
batchs.append(ways)
else:
ways_stacked = torch.stack(ways)
ways_stacked_shape = ways_stacked.shape
batchs.append(ways_stacked.t().reshape(ways_stacked_shape))
yield batchs