-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_handler.py
652 lines (566 loc) · 21.8 KB
/
data_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# DataHandler for different types of datasets
from util import *
import sys
from scipy import ndimage
def ChooseDataHandler(data_pb):
if data_pb.dataset_type == config_pb2.Data.LABELLED:
return DataHandler(data_pb)
elif data_pb.dataset_type == config_pb2.Data.UNLABELLED:
return UnlabelledDataHandler(data_pb)
elif data_pb.dataset_type == config_pb2.Data.BOUNCING_MNIST:
return BouncingMNISTDataHandler(data_pb)
elif data_pb.dataset_type == config_pb2.Data.VIDEO_PATCH:
return VideoPatchDataHandler(data_pb)
else:
raise Exception('Unknown DatasetType.')
class DataHandler(object):
"""Handling labelled datasets.
Input could be anything from features of convolutional net to raw pixels."""
def __init__(self, data_pb):
self.data_file = data_pb.data_file
self.dataset_name_ = data_pb.dataset_name
self.data_ = h5py.File(data_pb.data_file)[data_pb.dataset_name]
self.seq_length_ = data_pb.num_frames
self.seq_stride_ = data_pb.stride
self.randomize_ = data_pb.randomize
self.batch_size_ = data_pb.batch_size
self.image_size_x_ = data_pb.image_size_x
self.image_size_y_ = data_pb.image_size_y
self.patch_size_x_ = data_pb.patch_size_x
self.patch_size_y_ = data_pb.patch_size_y
self.sample_times_ = data_pb.sample_times
self.num_colors_ = data_pb.num_colors
if self.image_size_x_ == 0:
self.image_size_x_ = 1
if self.image_size_y_ == 0:
self.image_size_y_ = 1
if self.patch_size_x_ == 0:
self.patch_size_x_ = self.image_size_x_
if self.patch_size_y_ == 0:
self.patch_size_y_ = self.image_size_y_
if self.num_colors_ == 0:
self.num_colors_ = self.data_.shape[1]
if data_pb.mean_file != "":
f = h5py.File(data_pb.mean_file)
self.mean_ = f['pixel_mean'].value
self.std_ = f['pixel_std'].value
assert self.mean_.shape[0] == self.num_colors_
f.close()
else:
self.mean_ = None
self.std_ = None
self.frame_size_ = self.num_colors_ * self.patch_size_y_ * self.patch_size_x_
print self.num_colors_ * self.image_size_y_ * self.image_size_x_
print self.data_.shape[1]
assert self.num_colors_ * self.image_size_y_ * self.image_size_x_ == self.data_.shape[1]
self.x_slack_ = self.image_size_x_ - self.patch_size_x_
self.y_slack_ = self.image_size_y_ - self.patch_size_y_
video_boundaries, num_frames = self.GetBoundaries(data_pb.num_frames_file)
labels = self.GetLabels(data_pb.labels_file)
assert len(labels) == len(video_boundaries)
video_ids = self.GetVideoIds(data_pb.video_ids_file)
if len(video_ids) == 0:
video_ids = range(len(labels))
self.num_frames_ = []
self.video_ind_ = {}
frame_indices = []
this_labels = []
for v, video_id in enumerate(video_ids):
this_labels.append(labels[video_id])
start, end = video_boundaries[video_id]
self.num_frames_.append(num_frames[video_id])
end = end - self.seq_length_ + 1
frame_indices.extend(range(start, end, self.seq_stride_))
for i in xrange(start, end, self.seq_stride_):
self.video_ind_[i] = v
self.num_videos_ = len(video_ids)
self.dataset_size_ = len(frame_indices)
print 'Dataset size', self.dataset_size_
self.frame_indices_ = np.array(frame_indices)
self.labels_ = np.array(this_labels).reshape(-1, 1)
self.Reset()
self.batch_data_ = np.zeros((self.batch_size_, self.seq_length_ * self.frame_size_), dtype=np.float32)
self.batch_label_ = np.zeros((self.batch_size_, 1), dtype=np.float32)
# Get the boundaries (start index and end index) of each video
def GetBoundaries(self, filename):
boundaries = []
num_frames = []
start = 0
for line in open(filename):
num_f = int(line.strip())
num_frames.append(num_f)
end = start + num_f
boundaries.append((start, end))
start = end
return boundaries, num_frames
def GetLabels(self, filename):
labels = []
if filename != '':
for line in open(filename):
labels.append(int(line.strip()))
return labels
def GetVideoIds(self, filename):
video_ids = []
if filename != '':
for line in open(filename):
video_ids.append(int(line.strip()))
return video_ids
def GetBatchSize(self):
return self.batch_size_
def GetDims(self):
return self.frame_size_
def GetDatasetSize(self):
return self.dataset_size_
def GetSeqLength(self):
return self.seq_length_
def Reset(self):
self.frame_row_ = 0
if self.randomize_:
np.random.shuffle(self.frame_indices_)
# Crop the patch from image frame
def Crop(self, data, num_crops=1):
d = data.reshape((data.shape[0], self.num_colors_, self.image_size_y_, self.image_size_x_))
if self.x_slack_ > 0:
x_offset = np.random.choice(self.x_slack_, size=num_crops)
else:
x_offset = np.zeros(num_crops, dtype=np.int32)
if self.y_slack_ > 0:
y_offset = np.random.choice(self.y_slack_, size=num_crops)
else:
y_offset = np.zeros(num_crops, dtype=np.int32)
crops = np.zeros((num_crops, data.shape[0], self.num_colors_, self.patch_size_y_, self.patch_size_x_))
seq_length = data.shape[0]
for i in xrange(num_crops):
crops[i, :, :, :, :] = d[:, :,
y_offset[i]: y_offset[i] + self.patch_size_y_,
x_offset[i]: x_offset[i] + self.patch_size_x_]
if self.mean_ is not None:
for i in xrange(self.num_colors_):
crops[:, :, i, :, :] -= self.mean_[i]
crops[:, :, i, :, :] /= self.std_[i]
return crops.reshape((num_crops, -1))
def GetBatch(self, verbose=False):
batch_size = self.batch_size_
for j in xrange(batch_size):
if verbose:
sys.stdout.write('\r%d of %d' % (j+1, batch_size))
sys.stdout.flush()
ind = j % self.sample_times_
if ind == 0:
start = self.frame_indices_[self.frame_row_]
self.frame_row_ += 1
if self.frame_row_ == self.dataset_size_:
self.Reset()
end = start + self.seq_length_
crops = self.Crop(self.data_[start:end, :], self.sample_times_)
self.batch_data_[j, :] = crops[ind, :].reshape(-1)
self.batch_label_[j, :] = self.labels_[self.video_ind_[start], :]
if verbose:
sys.stdout.write('\n')
return self.batch_data_, self.batch_label_
def GetResults(self, predictions):
assert not self.randomize_
assert predictions.shape[0] == self.dataset_size_
start = 0
pooled_correct = 0
correct = 0
# pooled_pred are averaged results for all selected frames in the video
for i in xrange(self.num_videos_):
end = start + 1 + max(0, (self.num_frames_[i] - self.seq_length_)/self.seq_stride_)
correct += (predictions[start:end, :].argmax(axis=1) == self.labels_[i]).sum()
pooled_pred = predictions[start:end, :].mean(axis=0)
pooled_correct += pooled_pred.argmax() == self.labels_[i]
start = end
return correct / float(self.dataset_size_), pooled_correct / float(self.num_videos_)
def DisplayData(self, data, rec=None, fut=None, fig=1, case_id=0, output_file=None):
name, ext = os.path.splitext(output_file)
output_file1 = '%s_original%s' % (name, ext)
output_file2 = '%s_recon%s' % (name, ext)
if self.num_colors_ == 3:
d = data[0, :].reshape(self.seq_length_, self.num_colors_, self.patch_size_y_, self.patch_size_x_)
r = rec[0, :].reshape(-1, self.num_colors_, self.patch_size_y_, self.patch_size_x_)
f = fut[0, :].reshape(-1, self.num_colors_, self.patch_size_y_, self.patch_size_x_)
im1 = np.zeros((self.patch_size_y_, self.patch_size_x_, self.num_colors_), dtype=np.uint8)
im2 = np.zeros((self.patch_size_y_, self.patch_size_x_, self.num_colors_), dtype=np.uint8)
rec_length = r.shape[0] if rec is not None else 0
fut_length = f.shape[0] if fut is not None else 0
plt.figure(2*fig, figsize=(self.seq_length_, 1))
plt.clf()
for i in xrange(self.seq_length_):
for j in xrange(self.num_colors_):
im1[:, :, j] = ((d[i, j, :, :] * self.std_[j]) + self.mean_[j]).astype(np.uint8)
plt.subplot(1, self.seq_length_, i+1)
plt.imshow(im1, interpolation="nearest")
plt.axis('off')
plt.draw()
print output_file1
plt.savefig(output_file1, bbox_inches='tight')
plt.figure(2*fig+1, figsize=(self.seq_length_, 1))
plt.clf()
for i in xrange(self.seq_length_):
for j in xrange(self.num_colors_):
r_i = rec_length - i - 1
f_i = i - rec_length
if r_i >= 0:
im = (r[r_i, j, :, :] * self.std_[j]) + self.mean_[j]
im = np.minimum(255, np.maximum(im, 0))
im2[:, :, j] = im.astype(np.uint8)
if f_i >= 0:
im = (f[f_i, j, :, :] * self.std_[j]) + self.mean_[j]
im = np.minimum(255, np.maximum(im, 0))
im2[:, :, j] = im.astype(np.uint8)
plt.subplot(1, self.seq_length_, i+1)
plt.imshow(im2, interpolation="nearest")
plt.axis('off')
plt.draw()
print output_file2
plt.savefig(output_file2, bbox_inches='tight')
else:
for i in xrange(self.seq_length_):
plt.subplot(1, self.seq_length_, i+1)
for j in xrange(self.num_colors_):
im[:, :, j] = d[i, j, :, :].astype(np.uint8)
plt.imshow(im)
plt.draw()
if output_file is None:
plt.pause(0.1)
else:
print output_file
plt.savefig(output_file, bbox_inches='tight')
class UnlabelledDataHandler(object):
"""Handling unlabelled datasets.
Generalizes VideoPatchDataHandler."""
def __init__(self, data_pb):
self.seq_length_ = data_pb.num_frames
self.seq_stride_ = data_pb.stride
self.randomize_ = data_pb.randomize
self.batch_size_ = data_pb.batch_size
self.filenames_ = []
self.num_frames_ = []
fnames = []
num_f = []
for line in open(data_pb.data_file):
fnames.append(line.strip())
print len(fnames)
for line in open(data_pb.num_frames_file):
num_f.append(int(line.strip()))
print len(num_f)
assert len(num_f) == len(fnames)
for i in xrange(len(num_f)):
if num_f[i] >= self.seq_length_:
self.num_frames_.append(num_f[i])
self.filenames_.append(fnames[i])
self.num_videos_ = len(self.filenames_)
print 'Num videos', self.num_videos_
data = h5py.File(self.filenames_[0])[data_pb.dataset_name]
self.frame_size_ = data.shape[1]
self.dataset_name_ = data_pb.dataset_name
frame_indices = []
self.dataset_size_ = 0
start = 0
self.video_ind_ = {}
for v, f in enumerate(self.num_frames_):
end = start + f - self.seq_length_ + 1
frame_indices.extend(range(start, end, self.seq_stride_))
for i in xrange(start, end, self.seq_stride_):
self.video_ind_[i] = v
start += f
self.dataset_size_ = len(frame_indices)
print 'Dataset size', self.dataset_size_
self.frame_indices_ = np.array(frame_indices)
self.vid_boundary_ = np.array(self.num_frames_).cumsum()
self.Reset()
self.batch_data_ = np.zeros((self.batch_size_, self.seq_length_ * self.frame_size_), dtype=np.float32)
def GetBatchSize(self):
return self.batch_size_
def GetDims(self):
return self.frame_size_
def GetDatasetSize(self):
return self.dataset_size_
def GetSeqLength(self):
return self.seq_length_
def Reset(self):
self.frame_row_ = 0
if self.randomize_:
np.random.shuffle(self.frame_indices_)
def GetBatch(self, verbose=False):
batch_size = self.batch_size_
for j in xrange(batch_size):
start = self.frame_indices_[self.frame_row_]
vid_ind = self.video_ind_[start]
if vid_ind > 0:
start -= self.vid_boundary_[vid_ind - 1]
self.frame_row_ += 1
if self.frame_row_ == self.dataset_size_:
self.Reset()
end = start + self.seq_length_
f = h5py.File(self.filenames_[vid_ind])
self.batch_data_[j, :] = f[self.dataset_name_][start:end, :].reshape(-1)
f.close()
return self.batch_data_, None
class BouncingMNISTDataHandler(object):
"""Data Handler that creates Bouncing MNIST dataset on the fly."""
def __init__(self, data_pb):
self.seq_length_ = data_pb.num_frames
self.batch_size_ = data_pb.batch_size
self.image_size_ = data_pb.image_size
self.num_digits_ = data_pb.num_digits
self.step_length_ = data_pb.step_length
self.dataset_size_ = 10000 # The dataset is really infinite. This is just for validation.
self.digit_size_ = 28
self.frame_size_ = self.image_size_ ** 2
try:
f = h5py.File('/home/ubuntu/unsupervised-videos-master/datasets/mnist.h5')
except:
print 'Please set the correct path to MNIST dataset'
sys.exit()
self.data_ = f['train'].value.reshape(-1, 28, 28)
f.close()
self.indices_ = np.arange(self.data_.shape[0])
self.row_ = 0
np.random.shuffle(self.indices_)
def GetBatchSize(self):
return self.batch_size_
def GetDims(self):
return self.frame_size_
def GetDatasetSize(self):
return self.dataset_size_
def GetSeqLength(self):
return self.seq_length_
def Reset(self):
pass
def GetRandomTrajectory(self, batch_size):
length = self.seq_length_
canvas_size = self.image_size_ - self.digit_size_
# Initial position uniform random inside the box.
y = np.random.rand(batch_size)
x = np.random.rand(batch_size)
# Choose a random velocity.
theta = np.random.rand(batch_size) * 2 * np.pi
v_y = np.sin(theta)
v_x = np.cos(theta)
start_y = np.zeros((length, batch_size))
start_x = np.zeros((length, batch_size))
for i in xrange(length):
# Take a step along velocity.
y += v_y * self.step_length_
x += v_x * self.step_length_
# Bounce off edges.
for j in xrange(batch_size):
if x[j] <= 0:
x[j] = 0
v_x[j] = -v_x[j]
if x[j] >= 1.0:
x[j] = 1.0
v_x[j] = -v_x[j]
if y[j] <= 0:
y[j] = 0
v_y[j] = -v_y[j]
if y[j] >= 1.0:
y[j] = 1.0
v_y[j] = -v_y[j]
start_y[i, :] = y
start_x[i, :] = x
# Scale to the size of the canvas.
start_y = (canvas_size * start_y).astype(np.int32)
start_x = (canvas_size * start_x).astype(np.int32)
return start_y, start_x
def Overlap(self, a, b):
""" Put b on top of a."""
return np.maximum(a, b)
#return b
def GetBatch(self, verbose=False):
start_y, start_x = self.GetRandomTrajectory(self.batch_size_ * self.num_digits_)
# minibatch data
data = np.zeros((self.batch_size_, self.seq_length_, self.image_size_, self.image_size_), dtype=np.float32)
for j in xrange(self.batch_size_):
for n in xrange(self.num_digits_):
# get random digit from dataset
ind = self.indices_[self.row_]
self.row_ += 1
if self.row_ == self.data_.shape[0]:
self.row_ = 0
np.random.shuffle(self.indices_)
digit_image = self.data_[ind, :, :]
# generate video
for i in xrange(self.seq_length_):
top = start_y[i, j * self.num_digits_ + n]
left = start_x[i, j * self.num_digits_ + n]
bottom = top + self.digit_size_
right = left + self.digit_size_
data[j, i, top:bottom, left:right] = self.Overlap(data[j, i, top:bottom, left:right], digit_image)
return data.reshape(self.batch_size_, -1), None
def DisplayData(self, data, rec=None, fut=None, fig=1, case_id=0, output_file=None):
output_file1 = None
output_file2 = None
if output_file is not None:
name, ext = os.path.splitext(output_file)
output_file1 = '%s_original%s' % (name, ext)
output_file2 = '%s_recon%s' % (name, ext)
# get data
data = data[case_id, :].reshape(-1, self.image_size_, self.image_size_)
# get reconstruction and future sequences if exist
if rec is not None:
rec = rec[case_id, :].reshape(-1, self.image_size_, self.image_size_)
enc_seq_length = rec.shape[0]
if fut is not None:
fut = fut[case_id, :].reshape(-1, self.image_size_, self.image_size_)
if rec is None:
enc_seq_length = self.seq_length_ - fut.shape[0]
else:
assert enc_seq_length == self.seq_length_ - fut.shape[0]
num_rows = 1
# create figure for original sequence
plt.figure(2*fig, figsize=(20, 1))
plt.clf()
for i in xrange(self.seq_length_):
plt.subplot(num_rows, self.seq_length_, i+1)
plt.imshow(data[i, :, :], cmap=plt.cm.gray, interpolation="nearest")
plt.axis('off')
plt.draw()
if output_file1 is not None:
print output_file1
plt.savefig(output_file1, bbox_inches='tight')
# create figure for reconstuction and future sequences
plt.figure(2*fig+1, figsize=(20, 1))
plt.clf()
for i in xrange(self.seq_length_):
if rec is not None and i < enc_seq_length:
plt.subplot(num_rows, self.seq_length_, i + 1)
plt.imshow(rec[rec.shape[0] - i - 1, :, :], cmap=plt.cm.gray, interpolation="nearest")
if fut is not None and i >= enc_seq_length:
plt.subplot(num_rows, self.seq_length_, i + 1)
plt.imshow(fut[i - enc_seq_length, :, :], cmap=plt.cm.gray, interpolation="nearest")
plt.axis('off')
plt.draw()
if output_file2 is not None:
print output_file2
plt.savefig(output_file2, bbox_inches='tight')
else:
plt.pause(0.1)
# video patches loaded from some file
class VideoPatchDataHandler(object):
def __init__(self, data_pb):
self.seq_length_ = data_pb.num_frames
self.batch_size_ = data_pb.batch_size
self.image_size_ = data_pb.image_size
self.data_file_ = data_pb.data_file
self.num_frames_ = data_pb.num_frames
self.num_colors_ = data_pb.num_colors
self.is_color_ = False
if self.num_colors_ == 3:
self.is_color_ = True
if self.is_color_:
self.frame_size_ = (self.image_size_ ** 2) * 3
else:
self.frame_size_ = self.image_size_ ** 2
try:
self.data_ = np.float32(np.load(self.data_file_))
self.data_ = self.data_ / 255.
except:
print 'Please set the correct path to the dataset'
sys.exit()
self.dataset_size_ = self.data_.shape[0]
self.row_ = 0
def GetBatchSize(self):
return self.batch_size_
def GetDims(self):
return self.frame_size_
def GetDatasetSize(self):
return self.dataset_size_
def GetSeqLength(self):
return self.seq_length_
def Reset(self):
self.row_ = 0
pass
def GetBatch(self, verbose=False):
minibatch = self.data_[self.row_:self.row_+self.batch_size_]
self.row_ = self.row_ + self.batch_size_
if self.row_ == self.data_.shape[0]:
self.row_ = 0
return minibatch.reshape(minibatch.shape[0], -1), None
def DisplayData(self, data, rec=None, fut=None, fig=1, case_id=0, output_file=None):
output_file1 = None
output_file2 = None
if output_file is not None:
name, ext = os.path.splitext(output_file)
output_file1 = '%s_original%s' % (name, ext)
output_file2 = '%s_recon%s' % (name, ext)
# get data
if self.is_color_:
data = data[case_id, :]
data[data>1.] = 1.
data[data<0.] = 0.
data = data.reshape(-1, 3, self.image_size_, self.image_size_)
data = data.transpose(0, 2, 3, 1)
else:
data = data[case_id, :].reshape(-1, self.image_size_, self.image_size_)
# get reconstruction and future sequences if they exist
if rec is not None:
if self.is_color_:
rec = rec[case_id, :]
rec[rec>1.] = 1.
rec[rec<0.] = 0.
rec = rec.reshape(-1, 3, self.image_size_, self.image_size_)
rec = rec.transpose(0, 2, 3, 1)
else:
rec = rec[case_id, :].reshape(-1, self.image_size_, self.image_size_)
enc_seq_length = rec.shape[0]
if fut is not None:
if self.is_color_:
fut = fut[case_id, :]
fut[fut>1.] = 1.
fut[fut<0.] = 0.
fut = fut.reshape(-1, 3, self.image_size_, self.image_size_)
fut = fut.transpose(0, 2, 3, 1)
else:
fut = fut[case_id, :].reshape(-1, self.image_size_, self.image_size_)
if rec is None:
enc_seq_length = self.seq_length_ - fut.shape[0]
else:
assert enc_seq_length == self.seq_length_ - fut.shape[0]
num_rows = 1
# create figure for original sequence
plt.figure(2*fig, figsize=(self.num_frames_, 1))
plt.clf()
data=np.swapaxes(data,1,2)
for i in xrange(self.seq_length_):
plt.subplot(num_rows, self.seq_length_, i+1)
if self.is_color_:
plt.imshow(data[i])
else:
plt.imshow(data[i, :, :], cmap=plt.cm.gray, interpolation="nearest")
plt.axis('off')
plt.draw()
if output_file1 is not None:
print output_file1
plt.savefig(output_file1, bbox_inches='tight')
# create figure for reconstuction and future sequences
plt.figure(2*fig+1, figsize=(self.num_frames_, 1))
plt.clf()
for i in xrange(self.seq_length_):
if rec is not None and i < enc_seq_length:
plt.subplot(num_rows, self.seq_length_, i + 1)
if self.is_color_:
plt.imshow(rec[rec.shape[0] - i - 1])
else:
lena = rec[rec.shape[0] - i - 1, :, :]
lena = np.flipud(lena)
lena = ndimage.rotate(lena, 270)
plt.imshow(lena, cmap=plt.cm.gray, interpolation="nearest")
if fut is not None and i >= enc_seq_length:
plt.subplot(num_rows, self.seq_length_, i + 1)
if self.is_color_:
plt.imshow(fut[i - enc_seq_length])
else:
lena = fut[i - enc_seq_length, :, :]
lena = np.flipud(lena)
lena = ndimage.rotate(lena, 270)
plt.imshow(lena, cmap=plt.cm.gray, interpolation="nearest")
plt.axis('off')
plt.draw()
if output_file2 is not None:
print output_file2
plt.savefig(output_file2, bbox_inches='tight')
else:
plt.pause(0.1)