forked from wolfSSL/wolfBoot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlibwolfboot.c
1054 lines (938 loc) · 29.8 KB
/
libwolfboot.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* libwolfboot.c
*
* Copyright (C) 2021 wolfSSL Inc.
*
* This file is part of wolfBoot.
*
* wolfBoot is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfBoot is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include <stdint.h>
#include "hal.h"
#include "wolfboot/wolfboot.h"
#include "image.h"
#ifdef UNIT_TEST
# include "printf.h"
# define unit_dbg wolfBoot_printf
#else
# define unit_dbg(...) do{}while(0)
#endif
#ifndef TRAILER_SKIP
# define TRAILER_SKIP 0
#endif
#if defined(EXT_ENCRYPTED)
#if defined(__WOLFBOOT)
#include "encrypt.h"
#else
#include <stddef.h>
#include <string.h>
#define XMEMSET memset
#define XMEMCPY memcpy
#define XMEMCMP memcmp
#endif
#define ENCRYPT_TMP_SECRET_OFFSET (WOLFBOOT_PARTITION_SIZE - \
(TRAILER_SKIP + ENCRYPT_KEY_SIZE + ENCRYPT_NONCE_SIZE))
#define TRAILER_OVERHEAD (4 + 1 + (WOLFBOOT_PARTITION_SIZE / \
(2 * WOLFBOOT_SECTOR_SIZE)))
/* MAGIC + PART_FLAG (1B) + (N_SECTORS / 2) */
#define START_FLAGS_OFFSET (ENCRYPT_TMP_SECRET_OFFSET - TRAILER_OVERHEAD)
#else
#define ENCRYPT_TMP_SECRET_OFFSET (WOLFBOOT_PARTITION_SIZE - (TRAILER_SKIP))
#endif
#if !defined(__WOLFBOOT)
#define XMEMSET memset
#define XMEMCPY memcpy
#define XMEMCMP memcmp
#endif
#ifndef NULL
# define NULL (void *)0
#endif
#ifndef NVM_CACHE_SIZE
#define NVM_CACHE_SIZE WOLFBOOT_SECTOR_SIZE
#endif
#ifdef EXT_FLASH
static uint32_t ext_cache;
#endif
#ifdef __WOLFBOOT
/* Inline use of ByteReverseWord32 */
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
uint32_t wb_reverse_word32(uint32_t x)
{
return ByteReverseWord32(x);
}
#endif
static const uint32_t wolfboot_magic_trail = WOLFBOOT_MAGIC_TRAIL;
/* Top addresses for FLAGS field
* - PART_BOOT_ENDFLAGS = top of flags for BOOT partition
* - PART_UPDATE_ENDFLAGS = top of flags for UPDATE_PARTITION
*/
#ifndef PART_BOOT_ENDFLAGS
#define PART_BOOT_ENDFLAGS (WOLFBOOT_PARTITION_BOOT_ADDRESS + ENCRYPT_TMP_SECRET_OFFSET)
#endif
#define FLAGS_BOOT_EXT() PARTN_IS_EXT(PART_BOOT)
#ifdef FLAGS_HOME
/*
* In FLAGS_HOME mode, all FLAGS live at the end of the boot partition:
* / -12 /-8 /-4 / END
* |Sn| ... |S2|S1|S0|PU| MAGIC |X|X|X|PB| MAGIC |
* ^--sectors --^ ^--update ^---boot partition
* flags partition flag
* flag
*
* */
#define PART_UPDATE_ENDFLAGS (PART_BOOT_ENDFLAGS - 8)
#define FLAGS_UPDATE_EXT() PARTN_IS_EXT(PART_BOOT)
#else
/* FLAGS are at the end of each partition */
#define PART_UPDATE_ENDFLAGS (WOLFBOOT_PARTITION_UPDATE_ADDRESS + ENCRYPT_TMP_SECRET_OFFSET)
#define FLAGS_UPDATE_EXT() PARTN_IS_EXT(PART_UPDATE)
#endif
#ifdef NVM_FLASH_WRITEONCE
#include <stddef.h>
#include <string.h>
static uint8_t NVM_CACHE[NVM_CACHE_SIZE] __attribute__((aligned(16)));
int RAMFUNCTION hal_trailer_write(uint32_t addr, uint8_t val) {
uint32_t addr_align = addr & (~(NVM_CACHE_SIZE - 1));
uint32_t addr_off = addr & (NVM_CACHE_SIZE - 1);
int ret = 0;
XMEMCPY(NVM_CACHE, (void *)addr_align, NVM_CACHE_SIZE);
ret = hal_flash_erase(addr_align, NVM_CACHE_SIZE);
if (ret != 0)
return ret;
NVM_CACHE[addr_off] = val;
#if FLASHBUFFER_SIZE != WOLFBOOT_SECTOR_SIZE
addr_off = 0;
while ((addr_off < WOLFBOOT_SECTOR_SIZE) && (ret == 0)) {
ret = hal_flash_write(addr_align + addr_off, NVM_CACHE + addr_off,
FLASHBUFFER_SIZE);
addr_off += FLASHBUFFER_SIZE;
}
#else
ret = hal_flash_write(addr_align, NVM_CACHE, NVM_CACHE_SIZE);
#endif
return ret;
}
int RAMFUNCTION hal_set_partition_magic(uint32_t addr)
{
uint32_t off = addr % NVM_CACHE_SIZE;
uint32_t base = addr - off;
int ret;
XMEMCPY(NVM_CACHE, (void *)base, NVM_CACHE_SIZE);
ret = hal_flash_erase(base, WOLFBOOT_SECTOR_SIZE);
if (ret != 0)
return ret;
XMEMCPY(NVM_CACHE + off, &wolfboot_magic_trail, sizeof(uint32_t));
ret = hal_flash_write(base, NVM_CACHE, WOLFBOOT_SECTOR_SIZE);
return ret;
}
#else
# define hal_trailer_write(addr, val) hal_flash_write(addr, (void *)&val, 1)
# define hal_set_partition_magic(addr) hal_flash_write(addr, \
(void*)&wolfboot_magic_trail, sizeof(uint32_t));
#endif
#if defined EXT_FLASH
static uint8_t* RAMFUNCTION get_trailer_at(uint8_t part, uint32_t at)
{
if (part == PART_BOOT) {
if (FLAGS_BOOT_EXT()){
ext_flash_check_read(PART_BOOT_ENDFLAGS - (sizeof(uint32_t) + at),
(void *)&ext_cache, sizeof(uint32_t));
return (uint8_t *)&ext_cache;
} else {
return (void *)(PART_BOOT_ENDFLAGS - (sizeof(uint32_t) + at));
}
}
else if (part == PART_UPDATE) {
if (FLAGS_UPDATE_EXT()) {
ext_flash_check_read(PART_UPDATE_ENDFLAGS - (sizeof(uint32_t) + at),
(void *)&ext_cache, sizeof(uint32_t));
return (uint8_t *)&ext_cache;
} else {
return (void *)(PART_UPDATE_ENDFLAGS - (sizeof(uint32_t) + at));
}
} else
return NULL;
}
static void RAMFUNCTION set_trailer_at(uint8_t part, uint32_t at, uint8_t val)
{
if (part == PART_BOOT) {
if (FLAGS_BOOT_EXT()) {
ext_flash_check_write(PART_BOOT_ENDFLAGS - (sizeof(uint32_t) + at),
(void *)&val, 1);
} else {
hal_trailer_write(PART_BOOT_ENDFLAGS - (sizeof(uint32_t) + at), val);
}
}
else if (part == PART_UPDATE) {
if (FLAGS_UPDATE_EXT()) {
ext_flash_check_write(PART_UPDATE_ENDFLAGS - (sizeof(uint32_t) + at),
(void *)&val, 1);
} else {
hal_trailer_write(PART_UPDATE_ENDFLAGS - (sizeof(uint32_t) + at), val);
}
}
}
static void RAMFUNCTION set_partition_magic(uint8_t part)
{
if (part == PART_BOOT) {
if (FLAGS_BOOT_EXT()) {
ext_flash_check_write(PART_BOOT_ENDFLAGS - sizeof(uint32_t),
(void *)&wolfboot_magic_trail, sizeof(uint32_t));
} else {
hal_set_partition_magic(PART_BOOT_ENDFLAGS - sizeof(uint32_t));
}
}
else if (part == PART_UPDATE) {
if (FLAGS_UPDATE_EXT()) {
ext_flash_check_write(PART_UPDATE_ENDFLAGS - sizeof(uint32_t),
(void *)&wolfboot_magic_trail, sizeof(uint32_t));
} else {
hal_set_partition_magic(PART_UPDATE_ENDFLAGS - sizeof(uint32_t));
}
}
}
#elif !defined(WOLFBOOT_FIXED_PARTITIONS)
static uint8_t* RAMFUNCTION get_trailer_at(uint8_t part, uint32_t at)
{
return 0;
}
static void RAMFUNCTION set_trailer_at(uint8_t part, uint32_t at, uint8_t val)
{
return;
}
static void RAMFUNCTION set_partition_magic(uint8_t part)
{
return;
}
#else
static uint8_t* RAMFUNCTION get_trailer_at(uint8_t part, uint32_t at)
{
if (part == PART_BOOT)
return (void *)(PART_BOOT_ENDFLAGS - (sizeof(uint32_t) + at));
else if (part == PART_UPDATE) {
return (void *)(PART_UPDATE_ENDFLAGS - (sizeof(uint32_t) + at));
}
return NULL;
}
static void RAMFUNCTION set_trailer_at(uint8_t part, uint32_t at, uint8_t val)
{
if (part == PART_BOOT) {
hal_trailer_write(PART_BOOT_ENDFLAGS - (sizeof(uint32_t) + at), val);
}
else if (part == PART_UPDATE) {
hal_trailer_write(PART_UPDATE_ENDFLAGS - (sizeof(uint32_t) + at), val);
}
}
static void RAMFUNCTION set_partition_magic(uint8_t part)
{
if (part == PART_BOOT) {
hal_set_partition_magic(PART_BOOT_ENDFLAGS - sizeof(uint32_t));
}
else if (part == PART_UPDATE) {
hal_set_partition_magic(PART_UPDATE_ENDFLAGS - sizeof(uint32_t));
}
}
#endif /* EXT_FLASH */
#ifdef WOLFBOOT_FIXED_PARTITIONS
static uint32_t* RAMFUNCTION get_partition_magic(uint8_t part)
{
return (uint32_t *)get_trailer_at(part, 0);
}
static uint8_t* RAMFUNCTION get_partition_state(uint8_t part)
{
return (uint8_t *)get_trailer_at(part, 1);
}
static void RAMFUNCTION set_partition_state(uint8_t part, uint8_t val)
{
set_trailer_at(part, 1, val);
}
static void RAMFUNCTION set_update_sector_flags(uint32_t pos, uint8_t val)
{
set_trailer_at(PART_UPDATE, 2 + pos, val);
}
static uint8_t* RAMFUNCTION get_update_sector_flags(uint32_t pos)
{
return (uint8_t *)get_trailer_at(PART_UPDATE, 2 + pos);
}
int RAMFUNCTION wolfBoot_set_partition_state(uint8_t part, uint8_t newst)
{
uint32_t *magic;
uint8_t *state;
magic = get_partition_magic(part);
if (*magic != WOLFBOOT_MAGIC_TRAIL)
set_partition_magic(part);
state = get_partition_state(part);
if (*state != newst)
set_partition_state(part, newst);
return 0;
}
int RAMFUNCTION wolfBoot_set_update_sector_flag(uint16_t sector, uint8_t newflag)
{
uint32_t *magic;
uint8_t *flags;
uint8_t fl_value;
uint8_t pos = sector >> 1;
magic = get_partition_magic(PART_UPDATE);
if (*magic != wolfboot_magic_trail)
set_partition_magic(PART_UPDATE);
flags = get_update_sector_flags(pos);
if (sector == (pos << 1))
fl_value = (*flags & 0xF0) | (newflag & 0x0F);
else
fl_value = ((newflag & 0x0F) << 4) | (*flags & 0x0F);
if (fl_value != *flags)
set_update_sector_flags(pos, fl_value);
return 0;
}
int RAMFUNCTION wolfBoot_get_partition_state(uint8_t part, uint8_t *st)
{
uint32_t *magic;
uint8_t *state;
magic = get_partition_magic(part);
if (*magic != WOLFBOOT_MAGIC_TRAIL)
return -1;
state = get_partition_state(part);
*st = *state;
return 0;
}
int wolfBoot_get_update_sector_flag(uint16_t sector, uint8_t *flag)
{
uint32_t *magic;
uint8_t *flags;
uint8_t pos = sector >> 1;
magic = get_partition_magic(PART_UPDATE);
if (*magic != WOLFBOOT_MAGIC_TRAIL)
return -1;
flags = get_update_sector_flags(pos);
if (sector == (pos << 1))
*flag = *flags & 0x0F;
else
*flag = (*flags & 0xF0) >> 4;
return 0;
}
void RAMFUNCTION wolfBoot_erase_partition(uint8_t part)
{
uint32_t address = 0;
int size = 0;
if (part == PART_BOOT) {
address = WOLFBOOT_PARTITION_BOOT_ADDRESS;
size = WOLFBOOT_PARTITION_SIZE;
}
if (part == PART_UPDATE) {
address = WOLFBOOT_PARTITION_UPDATE_ADDRESS;
size = WOLFBOOT_PARTITION_SIZE;
}
if (part == PART_SWAP) {
address = WOLFBOOT_PARTITION_SWAP_ADDRESS;
size = WOLFBOOT_SECTOR_SIZE;
}
if (size > 0) {
if (PARTN_IS_EXT(part)) {
ext_flash_unlock();
ext_flash_erase(address, size);
ext_flash_lock();
} else {
hal_flash_erase(address, size);
}
}
}
void RAMFUNCTION wolfBoot_update_trigger(void)
{
uint8_t st = IMG_STATE_UPDATING;
#ifdef FLAGS_HOME
/* Erase last sector of boot partition prior to
* setting the partition state.
*/
uint32_t last_sector = PART_UPDATE_ENDFLAGS -
(PART_UPDATE_ENDFLAGS % WOLFBOOT_SECTOR_SIZE);
hal_flash_unlock();
hal_flash_erase(last_sector, WOLFBOOT_SECTOR_SIZE);
hal_flash_lock();
#endif
if (FLAGS_UPDATE_EXT()) {
ext_flash_unlock();
wolfBoot_set_partition_state(PART_UPDATE, st);
ext_flash_lock();
} else {
hal_flash_unlock();
wolfBoot_set_partition_state(PART_UPDATE, st);
hal_flash_lock();
}
}
void RAMFUNCTION wolfBoot_success(void)
{
uint8_t st = IMG_STATE_SUCCESS;
if (FLAGS_BOOT_EXT()) {
ext_flash_unlock();
wolfBoot_set_partition_state(PART_BOOT, st);
ext_flash_lock();
} else {
hal_flash_unlock();
wolfBoot_set_partition_state(PART_BOOT, st);
hal_flash_lock();
}
#ifdef EXT_ENCRYPTED
wolfBoot_erase_encrypt_key();
#endif
}
#endif /* WOLFBOOT_FIXED_PARTITIONS */
uint16_t wolfBoot_find_header(uint8_t *haystack, uint16_t type, uint8_t **ptr)
{
uint8_t *p = haystack;
uint16_t len;
const volatile uint8_t *max_p = (haystack - IMAGE_HEADER_OFFSET) +
IMAGE_HEADER_SIZE;
*ptr = NULL;
if (p > max_p) {
unit_dbg("Illegal address (too high)\n");
return 0;
}
while ((p + 4) < max_p) {
if ((p[0] == 0) && (p[1] == 0)) {
unit_dbg("Explicit end of options reached\n");
break;
}
if (*p == HDR_PADDING) {
/* Padding byte (skip one position) */
p++;
continue;
}
/* Sanity check to prevent dereferencing unaligned half-words */
if ((((unsigned long)p) & 0x01) != 0) {
p++;
continue;
}
len = p[2] | (p[3] << 8);
if ((4 + len) > (uint16_t)(IMAGE_HEADER_SIZE - IMAGE_HEADER_OFFSET)) {
unit_dbg("This field is too large (bigger than the space available "
"in the current header)\n");
unit_dbg("%d %d %d\n", len, IMAGE_HEADER_SIZE, IMAGE_HEADER_OFFSET);
break;
}
if (p + 4 + len > max_p) {
unit_dbg("This field is too large and would overflow the image "
"header\n");
break;
}
if ((p[0] | (p[1] << 8)) == type) {
*ptr = (p + 4);
return len;
}
p += 4 + len;
}
return 0;
}
#ifdef EXT_FLASH
static uint8_t hdr_cpy[IMAGE_HEADER_SIZE];
static uint32_t hdr_cpy_done = 0;
#endif
static inline uint32_t im2n(uint32_t val)
{
#ifdef BIG_ENDIAN_ORDER
val = (((val & 0x000000FF) << 24) |
((val & 0x0000FF00) << 8) |
((val & 0x00FF0000) >> 8) |
((val & 0xFF000000) >> 24));
#endif
return val;
}
static inline uint16_t im2ns(uint16_t val)
{
#ifdef BIG_ENDIAN_ORDER
val = (((val & 0x000000FF) << 8) |
((val & 0x0000FF00) >> 8));
#endif
return val;
}
#ifdef DELTA_UPDATES
int wolfBoot_get_delta_info(uint8_t part, int inverse, uint32_t **img_offset,
uint16_t **img_size)
{
uint32_t *version_field = NULL;
uint32_t *magic = NULL;
uint8_t *image = (uint8_t *)0x00000000;
if (part == PART_UPDATE) {
if (PARTN_IS_EXT(PART_UPDATE)) {
#ifdef EXT_FLASH
ext_flash_check_read((uintptr_t)WOLFBOOT_PARTITION_UPDATE_ADDRESS,
hdr_cpy, IMAGE_HEADER_SIZE);
hdr_cpy_done = 1;
image = hdr_cpy;
#endif
} else {
image = (uint8_t *)WOLFBOOT_PARTITION_UPDATE_ADDRESS;
}
} else if (part == PART_BOOT) {
if (PARTN_IS_EXT(PART_BOOT)) {
#ifdef EXT_FLASH
ext_flash_check_read((uintptr_t)WOLFBOOT_PARTITION_BOOT_ADDRESS,
hdr_cpy, IMAGE_HEADER_SIZE);
hdr_cpy_done = 1;
image = hdr_cpy;
#endif
} else {
image = (uint8_t *)WOLFBOOT_PARTITION_BOOT_ADDRESS;
}
}
/* Don't check image against NULL to allow using address 0x00000000 */
magic = (uint32_t *)image;
if (*magic != WOLFBOOT_MAGIC)
return -1;
if (inverse) {
if (wolfBoot_find_header((uint8_t *)(image + IMAGE_HEADER_OFFSET),
HDR_IMG_DELTA_INVERSE, (uint8_t **)img_offset)
!= sizeof(uint32_t)) {
return -1;
}
if (wolfBoot_find_header((uint8_t *)(image + IMAGE_HEADER_OFFSET),
HDR_IMG_DELTA_INVERSE_SIZE, (uint8_t **)img_size)
!= sizeof(uint16_t)) {
return -1;
}
} else {
*img_offset = 0x0000000;
if (wolfBoot_find_header((uint8_t *)(image + IMAGE_HEADER_OFFSET),
HDR_IMG_DELTA_SIZE, (uint8_t **)img_size)
!= sizeof(uint16_t)) {
return -1;
}
}
return 0;
}
#endif
uint32_t wolfBoot_get_blob_version(uint8_t *blob)
{
uint32_t *version_field = NULL;
uint32_t *magic = NULL;
magic = (uint32_t *)blob;
if (*magic != WOLFBOOT_MAGIC)
return 0;
if (wolfBoot_find_header(blob + IMAGE_HEADER_OFFSET, HDR_VERSION,
(void *)&version_field) == 0)
return 0;
if (version_field)
return im2n(*version_field);
return 0;
}
uint32_t wolfBoot_get_blob_type(uint8_t *blob)
{
uint32_t *type_field = NULL;
uint32_t *magic = NULL;
magic = (uint32_t *)blob;
if (*magic != WOLFBOOT_MAGIC)
return 0;
if (wolfBoot_find_header(blob + IMAGE_HEADER_OFFSET, HDR_IMG_TYPE,
(void *)&type_field) == 0)
return 0;
if (type_field)
return im2ns(*type_field);
return 0;
}
uint32_t wolfBoot_get_blob_diffbase_version(uint8_t *blob)
{
uint32_t *delta_base = NULL;
uint32_t *magic = NULL;
magic = (uint32_t *)blob;
if (*magic != WOLFBOOT_MAGIC)
return 0;
if (wolfBoot_find_header(blob + IMAGE_HEADER_OFFSET, HDR_IMG_DELTA_BASE,
(void *)&delta_base) == 0)
return 0;
if (delta_base)
return *delta_base;
return 0;
}
#ifdef WOLFBOOT_FIXED_PARTITIONS
static uint8_t* wolfBoot_get_image_from_part(uint8_t part) {
uint8_t *image = (uint8_t *)0x00000000;
if (part == PART_UPDATE) {
image = (uint8_t *)WOLFBOOT_PARTITION_UPDATE_ADDRESS;
} else if (part == PART_BOOT) {
image = (uint8_t *)WOLFBOOT_PARTITION_BOOT_ADDRESS;
}
#ifdef EXT_FLASH
if (PARTN_IS_EXT(part)) {
ext_flash_check_read((uintptr_t)image, hdr_cpy, IMAGE_HEADER_SIZE);
hdr_cpy_done = 1;
image = hdr_cpy;
}
#endif
return image;
}
uint32_t wolfBoot_get_image_version(uint8_t part)
{
/* Don't check image against NULL to allow using address 0x00000000 */
return wolfBoot_get_blob_version(wolfBoot_get_image_from_part(part));
}
uint32_t wolfBoot_get_diffbase_version(uint8_t part)
{
/* Don't check image against NULL to allow using address 0x00000000 */
return wolfBoot_get_blob_diffbase_version(
wolfBoot_get_image_from_part(part));
}
uint16_t wolfBoot_get_image_type(uint8_t part)
{
uint8_t *image = wolfBoot_get_image_from_part(part);
if (image) {
return wolfBoot_get_blob_type(image);
}
return 0;
}
#endif /* WOLFBOOT_FIXED_PARTITIONS */
#if defined(WOLFBOOT_DUALBOOT)
#if defined(WOLFBOOT_FIXED_PARTITIONS)
int wolfBoot_dualboot_candidate(void)
{
int candidate = PART_BOOT;
int fallback_possible = 0;
uint32_t boot_v, update_v;
uint8_t p_state;
/* Find the candidate */
boot_v = wolfBoot_current_firmware_version();
update_v = wolfBoot_update_firmware_version();
/* -1 means no images available */
if ((boot_v == 0) && (update_v == 0))
return -1;
if (boot_v == 0) /* No primary image */
candidate = PART_UPDATE;
else if ((boot_v > 0) && (update_v > 0)) {
fallback_possible = 1;
if (update_v > boot_v)
candidate = PART_UPDATE;
}
/* Check current status for failure (still in TESTING), and fall-back
* if an alternative is available
*/
if (fallback_possible &&
(wolfBoot_get_partition_state(candidate, &p_state) == 0) &&
(p_state == IMG_STATE_TESTING))
{
wolfBoot_erase_partition(candidate);
candidate ^= 1; /* switch to other partition if available */
}
return candidate;
}
#else
static int wolfBoot_current_firmware_version()
{
return wolfBoot_get_blob_version(hal_get_primary_address());
}
static int wolfBoot_update_firmware_version() {
return wolfBoot_get_blob_version(hal_get_update_address());
}
int wolfBoot_dualboot_candidate_addr(void** addr)
{
int fallback_possible = 0;
uint32_t boot_v, update_v;
uint8_t p_state;
int retval = 0;
/* Find the candidate */
boot_v = wolfBoot_current_firmware_version();
update_v = wolfBoot_update_firmware_version();
/* -1 means no images available */
if ((boot_v == 0) && (update_v == 0))
return -1;
*addr = hal_get_primary_address();
if (boot_v == 0) { /* No primary image */
retval = 1;
*addr = hal_get_update_address();
}
else if ((boot_v > 0) && (update_v > 0)) {
fallback_possible = 1;
if (update_v > boot_v) {
retval = 1;
*addr = hal_get_update_address();
}
}
return retval;
}
#endif /* WOLFBOOT_FIXED_PARTITIONS */
int wolfBoot_fallback_is_possible(void)
{
uint32_t boot_v, update_v;
boot_v = wolfBoot_current_firmware_version();
update_v = wolfBoot_update_firmware_version();
if ((boot_v == 0) || (update_v == 0))
return 0;
return 1;
}
#endif /* WOLFBOOT_DUALBOOT */
#ifdef EXT_ENCRYPTED
#include "encrypt.h"
#ifndef EXT_FLASH
#error option EXT_ENCRYPTED requires EXT_FLASH
#endif
#ifdef NVM_FLASH_WRITEONCE
#define ENCRYPT_CACHE NVM_CACHE
#else
static uint8_t ENCRYPT_CACHE[NVM_CACHE_SIZE] __attribute__((aligned(32)));
#endif
static int RAMFUNCTION hal_set_key(const uint8_t *k, const uint8_t *nonce)
{
uint32_t addr = ENCRYPT_TMP_SECRET_OFFSET + WOLFBOOT_PARTITION_BOOT_ADDRESS;
uint32_t addr_align = addr & (~(WOLFBOOT_SECTOR_SIZE - 1));
uint32_t addr_off = addr & (WOLFBOOT_SECTOR_SIZE - 1);
int ret = 0;
hal_flash_unlock();
/* casting to unsigned long to abide compilers on 64bit architectures */
XMEMCPY(ENCRYPT_CACHE,
(void*)(unsigned long)addr_align, WOLFBOOT_SECTOR_SIZE);
ret = hal_flash_erase(addr_align, WOLFBOOT_SECTOR_SIZE);
if (ret != 0)
return ret;
XMEMCPY(ENCRYPT_CACHE + addr_off, k, ENCRYPT_KEY_SIZE);
XMEMCPY(ENCRYPT_CACHE + addr_off + ENCRYPT_KEY_SIZE, nonce,
ENCRYPT_NONCE_SIZE);
ret = hal_flash_write(addr_align, ENCRYPT_CACHE, WOLFBOOT_SECTOR_SIZE);
hal_flash_lock();
return ret;
}
int RAMFUNCTION wolfBoot_set_encrypt_key(const uint8_t *key,
const uint8_t *nonce)
{
hal_set_key(key, nonce);
return 0;
}
int RAMFUNCTION wolfBoot_get_encrypt_key(uint8_t *k, uint8_t *nonce)
{
uint8_t *mem = (uint8_t *)(ENCRYPT_TMP_SECRET_OFFSET +
WOLFBOOT_PARTITION_BOOT_ADDRESS);
XMEMCPY(k, mem, ENCRYPT_KEY_SIZE);
XMEMCPY(nonce, mem + ENCRYPT_KEY_SIZE, ENCRYPT_NONCE_SIZE);
return 0;
}
int RAMFUNCTION wolfBoot_erase_encrypt_key(void)
{
uint8_t ff[ENCRYPT_KEY_SIZE + ENCRYPT_NONCE_SIZE];
int i;
uint8_t *mem = (uint8_t *)ENCRYPT_TMP_SECRET_OFFSET +
WOLFBOOT_PARTITION_BOOT_ADDRESS;
XMEMSET(ff, 0xFF, ENCRYPT_KEY_SIZE + ENCRYPT_NONCE_SIZE);
if (XMEMCMP(mem, ff, ENCRYPT_KEY_SIZE + ENCRYPT_NONCE_SIZE) != 0)
hal_set_key(ff, ff + ENCRYPT_KEY_SIZE);
return 0;
}
#ifdef __WOLFBOOT
static int encrypt_initialized = 0;
static uint8_t encrypt_iv_nonce[ENCRYPT_NONCE_SIZE];
#ifdef ENCRYPT_WITH_CHACHA
ChaCha chacha;
int chacha_init(void)
{
uint8_t *key = (uint8_t *)(WOLFBOOT_PARTITION_BOOT_ADDRESS +
ENCRYPT_TMP_SECRET_OFFSET);
uint8_t ff[ENCRYPT_KEY_SIZE];
uint8_t *stored_nonce = key + ENCRYPT_KEY_SIZE;
XMEMSET(&chacha, 0, sizeof(chacha));
/* Check against 'all 0xff' or 'all zero' cases */
XMEMSET(ff, 0xFF, ENCRYPT_KEY_SIZE);
if (XMEMCMP(key, ff, ENCRYPT_KEY_SIZE) == 0)
return -1;
XMEMSET(ff, 0x00, ENCRYPT_KEY_SIZE);
if (XMEMCMP(key, ff, ENCRYPT_KEY_SIZE) == 0)
return -1;
XMEMCPY(encrypt_iv_nonce, stored_nonce, ENCRYPT_NONCE_SIZE);
wc_Chacha_SetKey(&chacha, key, ENCRYPT_KEY_SIZE);
encrypt_initialized = 1;
return 0;
}
#elif defined(ENCRYPT_WITH_AES128) || defined(ENCRYPT_WITH_AES256)
Aes aes_dec, aes_enc;
int aes_init(void)
{
uint8_t *key = (uint8_t *)(WOLFBOOT_PARTITION_BOOT_ADDRESS +
ENCRYPT_TMP_SECRET_OFFSET);
uint8_t ff[ENCRYPT_KEY_SIZE];
uint8_t iv_buf[ENCRYPT_BLOCK_SIZE];
uint8_t *stored_nonce = key + ENCRYPT_KEY_SIZE;
XMEMSET(&aes_enc, 0, sizeof(aes_enc));
XMEMSET(&aes_dec, 0, sizeof(aes_dec));
wc_AesInit(&aes_enc, NULL, 0);
wc_AesInit(&aes_dec, NULL, 0);
/* Check against 'all 0xff' or 'all zero' cases */
XMEMSET(ff, 0xFF, ENCRYPT_KEY_SIZE);
if (XMEMCMP(key, ff, ENCRYPT_KEY_SIZE) == 0)
return -1;
XMEMSET(ff, 0x00, ENCRYPT_KEY_SIZE);
if (XMEMCMP(key, ff, ENCRYPT_KEY_SIZE) == 0)
return -1;
XMEMCPY(encrypt_iv_nonce, stored_nonce, ENCRYPT_NONCE_SIZE);
XMEMCPY(iv_buf, stored_nonce, ENCRYPT_NONCE_SIZE);
/* AES_ENCRYPTION is used for both directions in CTR */
wc_AesSetKeyDirect(&aes_enc, key, ENCRYPT_KEY_SIZE, iv_buf, AES_ENCRYPTION);
wc_AesSetKeyDirect(&aes_dec, key, ENCRYPT_KEY_SIZE, iv_buf, AES_ENCRYPTION);
encrypt_initialized = 1;
return 0;
}
void aes_set_iv(uint8_t *nonce, uint32_t iv_ctr)
{
uint32_t iv_buf[ENCRYPT_BLOCK_SIZE / sizeof(uint32_t)];
uint32_t iv_local_ctr;
int i;
XMEMCPY(iv_buf, nonce, ENCRYPT_NONCE_SIZE);
#ifndef BIG_ENDIAN_ORDER
for (i = 0; i < 4; i++) {
iv_buf[i] = wb_reverse_word32(iv_buf[i]);
}
#endif
iv_buf[3] += iv_ctr;
if (iv_buf[3] < iv_ctr) { /* overflow */
for (i = 2; i >= 0; i--) {
iv_buf[i]++;
if (iv_buf[i] != 0)
break;
}
}
#ifndef BIG_ENDIAN_ORDER
for (i = 0; i < 4; i++) {
iv_buf[i] = wb_reverse_word32(iv_buf[i]);
}
#endif
wc_AesSetIV(&aes_enc, (byte *)iv_buf);
wc_AesSetIV(&aes_dec, (byte *)iv_buf);
}
#endif
static inline uint8_t part_address(uintptr_t a)
{
if ( 1 &&
#if WOLFBOOT_PARTITION_UPDATE_ADDRESS != 0
(a >= WOLFBOOT_PARTITION_UPDATE_ADDRESS) &&
#endif
(a < WOLFBOOT_PARTITION_UPDATE_ADDRESS + WOLFBOOT_PARTITION_SIZE))
return PART_UPDATE;
if ( 1 &&
#if WOLFBOOT_PARTITION_SWAP_ADDRESS != 0
(a >= WOLFBOOT_PARTITION_SWAP_ADDRESS) &&
#endif
(a < WOLFBOOT_PARTITION_SWAP_ADDRESS + WOLFBOOT_SECTOR_SIZE))
return PART_SWAP;
return PART_NONE;
}
int ext_flash_encrypt_write(uintptr_t address, const uint8_t *data, int len)
{
uint8_t block[ENCRYPT_BLOCK_SIZE];
uint8_t part;
int sz = len;
uint32_t row_address = address, row_offset;
int i;
uint8_t enc_block[ENCRYPT_BLOCK_SIZE];
row_offset = address & (ENCRYPT_BLOCK_SIZE - 1);
if (row_offset != 0) {
row_address = address & ~(ENCRYPT_BLOCK_SIZE - 1);
sz += ENCRYPT_BLOCK_SIZE - row_offset;
}
if (sz < ENCRYPT_BLOCK_SIZE) {
sz = ENCRYPT_BLOCK_SIZE;
}
if (!encrypt_initialized)
if (crypto_init() < 0)
return -1;
part = part_address(address);
switch(part) {
case PART_UPDATE:
/* do not encrypt flag sector */
if (address - WOLFBOOT_PARTITION_UPDATE_ADDRESS >=
START_FLAGS_OFFSET) {
return ext_flash_write(address, data, len);
}
break;
case PART_SWAP:
/* data is coming from update and is already encrypted */
return ext_flash_write(address, data, len);
default:
return -1;
}
if (sz > len) {
int step = ENCRYPT_BLOCK_SIZE - row_offset;
if (ext_flash_read(row_address, block, ENCRYPT_BLOCK_SIZE)
!= ENCRYPT_BLOCK_SIZE)
return -1;
XMEMCPY(block + row_offset, data, step);
crypto_encrypt(enc_block, block, ENCRYPT_BLOCK_SIZE);
ext_flash_write(row_address, enc_block, ENCRYPT_BLOCK_SIZE);
address += step;
data += step;
sz -= step;
}
for (i = 0; i < sz / ENCRYPT_BLOCK_SIZE; i++) {
XMEMCPY(block, data + (ENCRYPT_BLOCK_SIZE * i), ENCRYPT_BLOCK_SIZE);
crypto_encrypt(ENCRYPT_CACHE + (ENCRYPT_BLOCK_SIZE * i), block,
ENCRYPT_BLOCK_SIZE);
}
return ext_flash_write(address, ENCRYPT_CACHE, len);
}
int ext_flash_decrypt_read(uintptr_t address, uint8_t *data, int len)
{
uint32_t iv_counter = 0;
uint8_t block[ENCRYPT_BLOCK_SIZE];
uint8_t part;
int sz = len;
uint32_t row_address = address, row_offset;
int i;
row_offset = address & (ENCRYPT_BLOCK_SIZE - 1);
if (row_offset != 0) {