-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplayer.py
391 lines (297 loc) · 13.5 KB
/
player.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
# -*- coding: utf-8 -*-
import matrix
import random
from node import Node
from collections import deque, namedtuple
import code
import output
import re
class Player(object):
def __init__(self, moves):
self.moves = moves
self.score = 0
def getListOfPossibleBoards(self, board):
def getPossibleBoards():
for move in self.moves:
newboard = board.makeMoveAndReturnNewBoard(move)
if (newboard is not None):
yield newboard
return list(getPossibleBoards())
#get game tree
def getGameTree(self, board, depth):
def expandNode(node):
branches = self.getListOfPossibleBoards(node.board)
for branch in branches:
if (branch is not None):
node.addChild(Node(branch))
def recursiveExpansion(node, depth):
if (depth == 0):
return node
else:
expandNode(node)
for child in node.children:
recursiveExpansion(child, depth - 1)
return node
root = Node(board)
return recursiveExpansion(root, depth)
def getPath(self, board):
abstract
def getMove(self, board):
abstract
def updateScore(self, jewels, chains):
s = jewels * 100 * (2 ** chains)
self.score += s
return s
class Human(Player):
def __init__(self, moves, name = None, inputStream = None):
Player.__init__(self, moves)
self.name = name
self.inputStream = inputStream
def __repr__(self):
return "Human Player named '%s'" % (self.name)
def getMove(self, board):
output.log("Selecting move...", module = "Player")
moveInput = self.inputStream.readline().strip()
try:
matches = re.findall(r'^(\d+) (\d+) (\d+) (\d+)$', moveInput)[0]
matches = [int(match) for match in matches]
move = ((matches[0], matches[1]), (matches[2], matches[3]))
except IndexError:
output.log("Error parsing input!", module = "Error")
move = None
return move
class GreedyEnergyVSEntropy(Player):
def __init__(self, moves, energythreshold):
Player.__init__(self, moves)
self.energythreshold = energythreshold
def __repr__(self):
return "Greedy: Energy VS Entropy (EnergyThreshold: %s) " % (self.energythreshold)
def getMove(self, board):
output.log("Selecting move...", module = "Player")
tree = self.getGameTree(board, 1)
energy = len(tree.children)
moves = [x.board.move for x in tree.children]
if len(moves) == 0:
return None
if energy < self.energythreshold:
output.log("Energy %s is lower than %s, so I'll play near the bottom" % (energy, self.energythreshold), module = "Player")
move1 = min(moves, key = lambda x : x[0][0]) #choose nearest to the top
move2 = min(moves, key = lambda x : x[1][0])
move = min(move1, move2)
else:
output.log("Energy %s is higher or equal to %s, so I'll play near the top" % (energy, self.energythreshold), module = "Player")
move1 = max(moves, key = lambda x : x[0][0]) #choose nearest to the top
move2 = max(moves, key = lambda x : x[1][0])
move = max(move1, move2)
output.log(move, module = "Player")
output.log("Move is ", move, module = "Player")
return move
""" What """
class EnergyVSEntropyReversed(Player):
def __init__(self, moves, depth, energythreshold):
Player.__init__(self, moves)
self.depth = depth
self.energythreshold = energythreshold
self.BestYet = namedtuple("BestYet", "energy path")
def __repr__(self):
return "Energy VS Entropy Reversed (EnergyPerDepthLevelThreshold %s) (MaxDepth: %s)" % (self.energythreshold, self.depth)
def getPath(self, tree):
#output.log(module = "Player", bestyet.score)
def depthFirst(node, energy, path):
if node.parent is not None:
thisenergy = energy + len(node.children)
thispath = path + (node.board.move,)
else:
thisenergy = 0
thispath = ()
bestyet = self.BestYet(energy=thisenergy, path=thispath)
if len(node.children) > 0:
def bestChild():
for child in node.children:
yield depthFirst(child, thisenergy, thispath)
bestyet = max(bestChild(), key=lambda x: x.energy)
return bestyet
return depthFirst(tree, 0, ())
def getMove(self, board):
output.log("Calculating tree up to %s levels..." % self.depth, module = "Player")
tree = self.getGameTree(board, self.depth)
output.log("Calculating best path...", module = "Player")
(totalenergy, path) = self.getPath(tree)
energyperdepthlevel = (totalenergy / self.depth)
if len(path) > 0:
if energyperdepthlevel >= self.energythreshold:
output.log("Energy per depth level is %s, above the threshold of %s" % (energyperdepthlevel, self.energythreshold), module = "Player")
output.log("Will attempt to preserve this and play near the top", module = "Player")
moves = [x.board.move for x in tree.children]
move1 = max(moves, key = lambda x : x[0][0]) #choose nearest to the top
move2 = max(moves, key = lambda x : x[1][0])
move = max(move1, move2)
return move
else:
output.log("Energy per depth level is %s, below the threshold of %s" % (energyperdepthlevel, self.energythreshold), module = "Player")
output.log("Path is %s (Energy: %s). Will take first step and recalculate." % (path, totalenergy), module = "Player")
move = path[0]
return move
else:
return None
class EnergyVSEntropy(Player):
def __init__(self, moves, depth, energythreshold):
Player.__init__(self, moves)
self.depth = depth
self.energythreshold = energythreshold
self.BestYet = namedtuple("BestYet", "energy path")
def __repr__(self):
return "Energy VS Entropy (EnergyPerDepthLevelThreshold %s) (MaxDepth: %s)" % (self.energythreshold, self.depth)
def getPath(self, tree):
#output.log(module = "Player", bestyet.score)
def depthFirst(node, energy, path):
if node.parent is not None:
thisenergy = energy + len(node.children)
thispath = path + (node.board.move,)
else:
thisenergy = 0
thispath = ()
bestyet = self.BestYet(energy=thisenergy, path=thispath)
if len(node.children) > 0:
def bestChild():
for child in node.children:
yield depthFirst(child, thisenergy, thispath)
bestyet = max(bestChild(), key=lambda x: x.energy)
return bestyet
return depthFirst(tree, 0, ())
def getMove(self, board):
output.log("Calculating tree up to %s levels..." % self.depth, module = "Player")
tree = self.getGameTree(board, self.depth)
output.log("Calculating best path...", module = "Player")
(totalenergy, path) = self.getPath(tree)
energyperdepthlevel = (totalenergy / self.depth)
if len(path) > 0:
if energyperdepthlevel < self.energythreshold:
output.log("Energy per depth level is %s, below the threshold of %s" % (energyperdepthlevel, self.energythreshold), module = "Player")
output.log("Will attempt to get lucky and play near the bottom", module = "Player")
moves = [x.board.move for x in tree.children]
move1 = min(moves, key = lambda x : x[0][0]) #choose nearest to the bottom
move2 = min(moves, key = lambda x : x[1][0])
move = min(move1, move2)
return move
else:
output.log("Energy per depth level is %s, above the threshold of %s" % (energyperdepthlevel, self.energythreshold), module = "Player")
output.log("Path is %s (Energy: %s). Will take first step and recalculate." % (path, totalenergy), module = "Player")
move = path[0]
return move
else:
return None
class BestScoreBetterEnergy(Player):
def __repr__(self):
return "BestScore/BetterEnergy (MaxDepth: %s) (MinEnergy: %s) " % (self.depth, self.minenergy)
def __init__(self, moves, depth, minenergy):
Player.__init__(self, moves)
self.depth = depth
self.minenergy = minenergy
self.sequence = deque([])
self.BestYet = namedtuple("BestYet", "score energy path")
def getPath(self, tree):
#output.log(module = "Player", bestyet.score)
def depthFirst(node, score, energy, path):
if node.parent is not None:
thisscore = score + node.board.score
thisenergy = energy + len(node.children)
thispath = path + (node.board.move,)
else:
thisscore = 0
thisenergy = 0
thispath = ()
bestyet = self.BestYet(score=thisscore, energy=thisenergy, path=thispath)
if len(node.children) > 0:
def bestChild():
for child in node.children:
yield depthFirst(child, thisscore, thisenergy, thispath)
candidates = []
for child in bestChild():
candidates.append(child)
electables = [candidate for candidate in candidates if candidate.energy >= self.minenergy]
if len(electables) > 0:
bestyet = max(electables, key=lambda x: x.score)
else:
bestyet = max(candidates, key=lambda x: x.energy)
return bestyet
return depthFirst(tree, 0, 0, ())
def getMove(self, board):
output.log("Calculating tree up to %s levels..." % self.depth, module = "Player")
tree = self.getGameTree(board, self.depth)
output.log("Calculating path...", module = "Player")
(score, energy, path) = self.getPath(tree)
output.log("Path is %s (Score: %s) (Energy: %s). Will take first step and recalculate." % (path, score, energy), module = "Player")
if len(path) > 0:
return path[0]
else:
return None
class BestEnergy(Player):
def __init__(self, moves, depth):
Player.__init__(self, moves)
self.depth = depth
self.BestYet = namedtuple("BestYet", "energy path")
def __repr__(self):
return "Best Energy (MaxDepth: %s)" % (self.depth)
def getPath(self, tree):
#output.log(module = "Player", bestyet.score)
def depthFirst(node, energy, path):
if node.parent is not None:
thisenergy = energy + len(node.children)
thispath = path + (node.board.move,)
else:
thisenergy = 0
thispath = ()
bestyet = self.BestYet(energy=thisenergy, path=thispath)
if len(node.children) > 0:
def bestChild():
for child in node.children:
yield depthFirst(child, thisenergy, thispath)
bestyet = max(bestChild(), key=lambda x: x.energy)
return bestyet
return depthFirst(tree, 0, ())
def getMove(self, board):
output.log("Calculating tree up to %s levels..." % self.depth, module = "Player")
tree = self.getGameTree(board, self.depth)
output.log("Calculating path...", module = "Player")
(energy, path) = self.getPath(tree)
output.log("Path is %s (Energy: %s). Will take first step and recalculate." % (path, energy), module = "Player")
if len(path) > 0:
return path[0]
else:
return None
class BestScore(Player):
def __repr__(self):
return "Best Score (MaxDepth: %s)" % (self.depth)
def __init__(self, moves, depth):
Player.__init__(self, moves)
self.depth = depth
self.sequence = deque([])
self.BestYet = namedtuple("BestYet", "score path")
def getPath(self, tree):
#output.log(module = "Player", bestyet.score)
def depthFirst(node, score, path):
if node.parent is not None:
thisscore = score + node.board.score
thispath = path + (node.board.move,)
else:
thisscore = 0
thispath = ()
bestyet = self.BestYet(score=thisscore, path=thispath)
if len(node.children) > 0:
def bestChild():
for child in node.children:
yield depthFirst(child, thisscore, thispath)
bestyet = max(bestChild(), key=lambda x: x.score)
return bestyet
return depthFirst(tree, 0, ())
def getMove(self, board):
output.log("Calculating tree up to %s levels..." % self.depth, module = "Player")
tree = self.getGameTree(board, self.depth)
output.log("Calculating path...", module = "Player")
(score, path) = self.getPath(tree)
output.log("Path is %s (Score: %s). Will take first step and recalculate." % (path, score), module = "Player")
if len(path) > 0:
return path[0]
else:
return None