-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtrain_MBN2_pre.py
195 lines (163 loc) · 5.24 KB
/
train_MBN2_pre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#------------------------------------------------------------------------------
# Import
#------------------------------------------------------------------------------
import torch, datetime, argparse, os
from torch import nn
from torchsummary import summary
from multiprocessing import cpu_count
import numpy as np
from utils.MobileNetV2_pretrained_imagenet import MobileNetV2, ImageFolderLoader
from utils.logger import TensorboardLogger
from utils.learning import train_on_epoch, valid_on_epoch, CheckPoint, EarlyStopping
#------------------------------------------------------------------------------
# Check directories
#------------------------------------------------------------------------------
def check_directories(list_dirs):
for dir in list_dirs:
if not os.path.exists(dir):
print("makedirs", dir)
os.makedirs(dir)
#------------------------------------------------------------------------------
# Parse arguments
#------------------------------------------------------------------------------
parser = argparse.ArgumentParser()
parser.add_argument(
'--channel', type=str, default="RGB",
help='Color channel'
)
parser.add_argument(
'--patch_sz', type=int, default=64,
help='Patch size'
)
parser.add_argument(
'--test_subset', type=int, default=5,
help='Index of the test subset'
)
parser.add_argument(
'--dir', type=str, default="./data/",
help='Folder containing the extracted data'
)
parser.add_argument(
'--n_epochs', type=int, default=50,
help='Number of epochs'
)
args = parser.parse_args()
#------------------------------------------------------------------------------
# Parameters
#------------------------------------------------------------------------------
# Device
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Training
BATCH_SZ = 64
LR = 1e-3
WD = 1e-5
MOMENTUM = 0.9
# Data directories
DIR = os.path.join(args.dir, "%s_%d_%d" % (
args.channel, args.patch_sz, args.test_subset
))
TRAIN_DIR = os.path.join(DIR, "train")
VALID_DIR = os.path.join(DIR, "valid")
# TensorBoardX
TFBOARD_TRAIN_DIR = "models/MBN2-mod-%s/checkpoints/train" % (args.channel)
TFBOARD_VALID_DIR = "models/MBN2-mod-%s/checkpoints/valid" % (args.channel)
# Checkpoint
CHECKPOINT_DIR = "models/MBN2-mod-%s/checkpoints/" % (args.channel)
N_NOT_IMPROVED = 5
IMPROVED_DELTA = 1e-3
# Pretrained on ImageNet
PRETRAINED_FILE = "utils/mobilenet_v2.pth"
# Create directories
list_dirs = [
CHECKPOINT_DIR,
TFBOARD_TRAIN_DIR,
TFBOARD_VALID_DIR,
]
check_directories(list_dirs)
#------------------------------------------------------------------------------
# Setup
#------------------------------------------------------------------------------
# Data loader
train_loader = ImageFolderLoader(
dir_image=TRAIN_DIR,
color_channel=args.channel,
batch_size=BATCH_SZ,
n_workers=cpu_count(),
pin_memory=True,
shuffle=True,
).train_loader
valid_loader = ImageFolderLoader(
dir_image=VALID_DIR,
color_channel=args.channel,
batch_size=BATCH_SZ,
n_workers=cpu_count(),
pin_memory=True,
shuffle=False,
).valid_loader
# Create and load model
model = MobileNetV2(n_class=2, input_size=args.patch_sz, width_mult=1.0).to(DEVICE)
model.load_pretrained_imagenet(model_file=PRETRAINED_FILE)
summary(model, input_size=(3, args.patch_sz, args.patch_sz))
# Optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(
model.parameters(),
lr=LR, weight_decay=WD,
momentum=MOMENTUM, nesterov=True,
)
# Create logger
logger_train = TensorboardLogger(TFBOARD_TRAIN_DIR)
logger_valid = TensorboardLogger(TFBOARD_VALID_DIR)
metrics = {
"loss_train": [],
"loss_valid": [],
"acc_train": [],
"acc_valid": [],
}
# Create callbacks
checkpoint = CheckPoint(
model=model,
optimizer=optimizer,
loss_fn=loss_fn,
savedir=CHECKPOINT_DIR,
improved_delta=IMPROVED_DELTA,
last_best_loss=np.inf,
)
earlystop = EarlyStopping(
not_improved_thres=N_NOT_IMPROVED,
improved_delta=IMPROVED_DELTA,
)
#------------------------------------------------------------------------------
# Train the model
#------------------------------------------------------------------------------
for epoch in range(1, args.n_epochs+1):
print("------------------------------------------------------------------")
# Train model
loss_train, acc_train, time_train = train_on_epoch(
model=model,
device=DEVICE,
dataloader=train_loader,
loss_fn=loss_fn,
optimizer=optimizer,
epoch=epoch)
logger_train.write_all_to_disk(epoch, loss_train, acc_train)
print('loss_train: {}, acc_train: {}'.format(loss_train, acc_train))
# Validate model
loss_valid, acc_valid, time_valid = valid_on_epoch(
model=model,
device=DEVICE,
dataloader=valid_loader,
loss_fn=loss_fn,
epoch=epoch)
logger_valid.write_all_to_disk(epoch, loss_valid, acc_valid)
print('loss_valid: {}, acc_valid: {}'.format(loss_valid, acc_valid))
# Record and print
metrics["loss_train"].append(loss_train)
metrics["acc_train"].append(acc_train)
metrics["loss_valid"].append(loss_valid)
metrics["acc_valid"].append(acc_valid)
print("Finish at {}, Runtime: {:.3f}[s]".format(datetime.datetime.now(), time_train+time_valid))
# Callbacks
checkpoint.backup(loss_train, loss_valid, acc_train, acc_valid, metrics, epoch)
if earlystop.check(loss_valid):
break