-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathtrain.py
171 lines (145 loc) · 8.21 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#coding:utf-8
import numpy as np
import json
from model import ConceptFlow, use_cuda
from preprocession import prepare_data, build_vocab, gen_batched_data
import torch
import warnings
import yaml
import os
warnings.filterwarnings('ignore')
csk_triples, csk_entities, kb_dict = [], [], []
dict_csk_entities, dict_csk_triples = {}, {}
class Config():
def __init__(self, path):
self.config_path = path
self._get_config()
def _get_config(self):
with open(self.config_path, "r") as setting:
config = yaml.load(setting)
self.is_train = config['is_train']
self.test_model_path = config['test_model_path']
self.embed_units = config['embed_units']
self.symbols = config['symbols']
self.units = config['units']
self.layers = config['layers']
self.batch_size = config['batch_size']
self.data_dir = config['data_dir']
self.num_epoch = config['num_epoch']
self.lr_rate = config['lr_rate']
self.lstm_dropout = config['lstm_dropout']
self.linear_dropout = config['linear_dropout']
self.max_gradient_norm = config['max_gradient_norm']
self.trans_units = config['trans_units']
self.gnn_layers = config['gnn_layers']
self.fact_dropout = config['fact_dropout']
self.fact_scale = config['fact_scale']
self.pagerank_lambda = config['pagerank_lambda']
self.result_dir_name = config['result_dir_name']
def list_all_member(self):
for name, value in vars(self).items():
print('%s = %s' % (name, value))
def run(model, data_train, config, word2id, entity2id):
batched_data = gen_batched_data(data_train, config, word2id, entity2id)
if model.is_inference == True:
word_index, selector = model(batched_data)
return word_index, selector
else:
decoder_loss, sentence_ppx, sentence_ppx_word, sentence_ppx_local, sentence_ppx_only_two, word_neg_num, local_neg_num, only_two_neg_num = model(batched_data)
return decoder_loss, sentence_ppx, sentence_ppx_word, sentence_ppx_local, sentence_ppx_only_two, word_neg_num, local_neg_num, only_two_neg_num
def train(config, model, data_train, data_test, word2id, entity2id, model_optimizer):
for epoch in range(config.num_epoch):
print ("epoch: ", epoch)
sentence_ppx_loss = 0
sentence_ppx_word_loss = 0
sentence_ppx_local_loss = 0
sentence_ppx_only_two_loss = 0
word_cut = use_cuda(torch.Tensor([0]))
local_cut = use_cuda(torch.Tensor([0]))
only_two_cut = use_cuda(torch.Tensor([0]))
count = 0
for iteration in range(len(data_train) // config.batch_size):
decoder_loss, sentence_ppx, sentence_ppx_word, sentence_ppx_local, sentence_ppx_only_two, word_neg_num, local_neg_num, \
only_two_neg_num = run(model, data_train[(iteration * config.batch_size):(iteration * \
config.batch_size + config.batch_size)], config, word2id, entity2id)
sentence_ppx_loss += torch.sum(sentence_ppx).data
sentence_ppx_word_loss += torch.sum(sentence_ppx_word).data
sentence_ppx_local_loss += torch.sum(sentence_ppx_local).data
sentence_ppx_only_two_loss += torch.sum(sentence_ppx_only_two).data
word_cut += word_neg_num
local_cut += local_neg_num
only_two_cut += only_two_neg_num
model_optimizer.zero_grad()
decoder_loss.backward()
torch.nn.utils.clip_grad_norm(model.parameters(), config.max_gradient_norm)
model_optimizer.step()
if count % 50 == 0:
print ("iteration:", iteration, "Loss:", decoder_loss.data)
count += 1
print ("perplexity for epoch", epoch + 1, ":", np.exp(sentence_ppx_loss.cpu() / len(data_train)), " ppx_word: ", \
np.exp(sentence_ppx_word_loss.cpu() / (len(data_train) - int(word_cut))), " ppx_local: ", \
np.exp(sentence_ppx_local_loss.cpu() / (len(data_train) - int(local_cut))), " ppx_only_two: ", \
np.exp(sentence_ppx_only_two_loss.cpu() / (len(data_train) - int(only_two_cut))))
torch.save(model.state_dict(), config.result_dir_name + '/' + '_epoch_' + str(epoch + 1) + '.pkl')
ppx, ppx_word, ppx_local, ppx_only_two = evaluate(model, data_test, config, word2id, entity2id, epoch + 1)
ppx_f = open(config.result_dir_name + '/result.txt','a')
ppx_f.write("epoch " + str(epoch + 1) + " ppx: " + str(ppx) + " ppx_word: " + str(ppx_word) + " ppx_local: " + \
str(ppx_local) + " ppx_only_two: " + str(ppx_only_two) + '\n')
ppx_f.close()
def evaluate(model, data_test, config, word2id, entity2id, epoch = 0, model_path = None):
if model_path != None:
model.load_state_dict(torch.load(model_path))
sentence_ppx_loss = 0
sentence_ppx_word_loss = 0
sentence_ppx_local_loss = 0
sentence_ppx_only_two_loss = 0
word_cut = use_cuda(torch.Tensor([0]))
local_cut = use_cuda(torch.Tensor([0]))
only_two_cut = use_cuda(torch.Tensor([0]))
count = 0
id2word = dict()
for key in word2id.keys():
id2word[word2id[key]] = key
for iteration in range(len(data_test) // config.batch_size):
decoder_loss, sentence_ppx, sentence_ppx_word, sentence_ppx_local, sentence_ppx_only_two, word_neg_num, \
local_neg_num, only_two_neg_num = run(model, data_test[(iteration * config.batch_size):(iteration * \
config.batch_size + config.batch_size)], config, word2id, entity2id)
sentence_ppx_loss += torch.sum(sentence_ppx).data
sentence_ppx_word_loss += torch.sum(sentence_ppx_word).data
sentence_ppx_local_loss += torch.sum(sentence_ppx_local).data
sentence_ppx_only_two_loss += torch.sum(sentence_ppx_only_two).data
word_cut += word_neg_num
local_cut += local_neg_num
only_two_cut += only_two_neg_num
if count % 50 == 0:
print ("iteration for evaluate:", iteration, "Loss:", decoder_loss.data)
count += 1
model.is_inference = False
if model_path != None:
print(' perplexity on test set:', np.exp(sentence_ppx_loss.cpu() / len(data_test)), \
np.exp(sentence_ppx_word_loss.cpu() / (len(data_test) - int(word_cut))), np.exp(sentence_ppx_local_loss.cpu() / (len(data_test) \
- int(local_cut))), np.exp(sentence_ppx_only_two_loss.cpu() / (len(data_test) - int(only_two_cut))))
exit()
print(' perplexity on test set:', np.exp(sentence_ppx_loss.cpu() / len(data_test)), np.exp(sentence_ppx_word_loss.cpu() / \
(len(data_test) - int(word_cut))), np.exp(sentence_ppx_local_loss.cpu() / (len(data_test) - int(local_cut))), \
np.exp(sentence_ppx_only_two_loss.cpu() / (len(data_test) - int(only_two_cut))))
return np.exp(sentence_ppx_loss.cpu() / len(data_test)), np.exp(sentence_ppx_word_loss.cpu() / (len(data_test) - int(word_cut))), \
np.exp(sentence_ppx_local_loss.cpu() / (len(data_test) - int(local_cut))), np.exp(sentence_ppx_only_two_loss.cpu() / \
(len(data_test) - int(only_two_cut)))
def main():
config = Config('config.yml')
config.list_all_member()
raw_vocab, data_train, data_test = prepare_data(config)
word2id, entity2id, vocab, embed, entity_vocab, entity_embed, relation_vocab, relation_embed, entity_relation_embed = build_vocab(config.data_dir, raw_vocab, config = config)
model = use_cuda(ConceptFlow(config, embed, entity_relation_embed))
model_optimizer = torch.optim.Adam(model.parameters(), lr = config.lr_rate)
if not os.path.exists(config.result_dir_name):
os.mkdir(config.result_dir_name)
ppx_f = open(config.result_dir_name + '/result.txt','a')
for name, value in vars(config).items():
ppx_f.write('%s = %s' % (name, value) + '\n')
if config.is_train == False:
evaluate(model, data_test, config, word2id, entity2id, 0, model_path = config.test_model_path)
exit()
train(config, model, data_train, data_test, word2id, entity2id, model_optimizer)
main()