-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathYolov7.cs
675 lines (607 loc) · 24.7 KB
/
Yolov7.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
using System.Diagnostics;
using Microsoft.Extensions.Caching.Memory;
using Microsoft.Extensions.Logging;
using Microsoft.JSInterop;
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using Newtonsoft.Json;
using yolov7DotNet.Helper;
using yolov7DotNet.ModelsHelper;
namespace yolov7DotNet;
public interface IYolov7
{
Task<List<Models.Yolov7Predict>> InferenceAsync(MemoryStream memoryStream);
Task<List<Models.Yolov7Predict>> InferenceAsync(Image<Rgb24> image);
Task<List<Models.Yolov7Predict>> InferenceAsync(string fileDir);
Task<List<Models.Yolov7Predict>> InferenceAsync(Stream stream);
Task<List<Models.Yolov7Predict>> InferenceAsync(DenseTensor<float> tensor);
Task<List<Models.Yolov7Predict>> InferenceAsync(TensorFeed tensor);
List<string> GetAvailableProviders();
void SetExcutionProvider(Yolov7NetService.ExecutionProvider ex, Yolov7NetService.Yolov7Weights? weight, byte[]? byteWeight);
Task<float> WarmUp(int cycle, int batchSize);
void SetCategory(List<string> categories);
void SetStride(int stride);
}
/// <summary>
///
/// </summary>
public class Yolov7 : Yolov7NetService.IYolov7, IDisposable
{
private readonly string _prefix = Properties.Resources.prefix;
private SessionOptions _sessionOptions;
private RunOptions _runOptions;
private List<string> _categories;
private IEnumerable<string> _inputNames;
private IReadOnlyList<string> _outputNames;
private readonly IJSRuntime? _jsRuntime;
private readonly ILogger<Yolov7NetService.Yolov7>? _logger;
private int Stride { get; set; }
private bool _disposed;
private IMemoryCache MemoryCache { get; set; }
public int[] InputShape;
public OrtIoBinding IoBinding;
public InferenceSession Session;
public Yolov7() : this(weight: Yolov7NetService.Yolov7Weights.Yolov7Tiny, jsRuntime: null, byteWeight: null, logger: null)
{
}
public Yolov7(Yolov7NetService.Yolov7Weights yolov7Weights) : this(weight: yolov7Weights, jsRuntime: null, byteWeight: null, logger: null)
{
}
public Yolov7(IJSRuntime jsRuntime) : this(weight: Yolov7NetService.Yolov7Weights.Yolov7Tiny, jsRuntime: jsRuntime, byteWeight: null, logger: null)
{
}
public Yolov7(Yolov7NetService.Yolov7Weights yolov7Weights, IJSRuntime jsRuntime) : this(weight: yolov7Weights, jsRuntime: jsRuntime, byteWeight: null, logger: null)
{
}
public Yolov7(Yolov7NetService.Yolov7Weights yolov7Weights, ILogger<Yolov7NetService.Yolov7> logger) : this(weight: yolov7Weights, jsRuntime: null, byteWeight: null, logger: logger)
{
}
public Yolov7(byte[] modelWeights) : this(byteWeight: modelWeights, jsRuntime: null, logger: null, weight: null)
{
}
public Yolov7(byte[] modelWeights, IJSRuntime jsRuntime) : this(byteWeight: modelWeights, jsRuntime: jsRuntime, logger: null)
{
}
public Yolov7(byte[] modelWeights, ILogger<Yolov7NetService.Yolov7> logger) : this(byteWeight: modelWeights, jsRuntime: null, logger: logger, weight: null)
{
}
public Yolov7(IJSRuntime? jsRuntime = null, Yolov7NetService.Yolov7Weights? weight = null, byte[]? byteWeight = null) : this(jsRuntime: jsRuntime, logger: null, weight: weight, byteWeight: byteWeight)
{
}
public Yolov7(IJSRuntime? jsRuntime = null, ILogger<Yolov7NetService.Yolov7>? logger = null, Yolov7NetService.Yolov7Weights? weight = null, byte[]? byteWeight = null)
{
if (jsRuntime != null)
{
_jsRuntime = jsRuntime;
}
if (logger != null)
{
_logger = logger;
}
var availableProvider = OrtEnv.Instance().GetAvailableProviders()[0];
switch (availableProvider)
{
case "CUDAExecutionProvider":
{
SetExcutionProvider(Yolov7NetService.ExecutionProvider.CUDA, weight, byteWeight);
break;
}
case "TensorrtExecutionProvider":
{
SetExcutionProvider(Yolov7NetService.ExecutionProvider.TensorRT, weight, byteWeight);
break;
}
case "DNNLExecutionProvider":
{
SetExcutionProvider(Yolov7NetService.ExecutionProvider.DNNL, weight, byteWeight);
break;
}
case "OpenVINOExecutionProvider":
{
SetExcutionProvider(Yolov7NetService.ExecutionProvider.OpenVINO, weight, byteWeight);
break;
}
case "DmlExecutionProvider":
{
SetExcutionProvider(Yolov7NetService.ExecutionProvider.DML, weight, byteWeight);
break;
}
case "ROCMExecutionProvider":
{
SetExcutionProvider(Yolov7NetService.ExecutionProvider.ROCm, weight, byteWeight);
break;
}
default:
{
SetExcutionProvider(Yolov7NetService.ExecutionProvider.CPU, weight, byteWeight);
break;
}
}
}
/// <summary>
///
/// </summary>
/// <param name="byteArray"></param>
/// <returns></returns>
public async Task<List<Models.Yolov7Predict>> InferenceAsync(byte[] byteArray)
{
using var image = Image.Load<Rgb24>(byteArray);
return await InferenceAsync(image);
}
/// <summary>
///
/// </summary>
/// <param name="memoryStream"></param>
/// <returns></returns>
public async Task<List<Models.Yolov7Predict>> InferenceAsync(MemoryStream memoryStream)
{
using var image = Image.Load<Rgb24>(memoryStream);
return await InferenceAsync(image);
}
/// <summary>
///
/// </summary>
/// <param name="fileDir"></param>
/// <returns></returns>
public async Task<List<Models.Yolov7Predict>> InferenceAsync(string fileDir)
{
using var image = Image.Load<Rgb24>(fileDir);
return await InferenceAsync(image);
}
/// <summary>
///
/// </summary>
/// <param name="stream"></param>
/// <returns></returns>
public async Task<List<Models.Yolov7Predict>> InferenceAsync(Stream stream)
{
using var image = Image.Load<Rgb24>(stream);
return await InferenceAsync(image);
}
/// <summary>
///
/// </summary>
/// <param name="image"></param>
/// <returns></returns>
public async Task<List<Models.Yolov7Predict>> InferenceAsync(Image<Rgb24> image)
{
var tensorFeed = PreProcess.Image2DenseTensor(image);
TensorFeed feed = new TensorFeed(new[] { InputShape[2], InputShape[3] }, Stride);
await feed.SetTensorAsync(tensorFeed);
return await RunNet(feed);
}
/// <summary>
///
/// </summary>
/// <param name="tensor"></param>
/// <returns></returns>
public async Task<List<Models.Yolov7Predict>> InferenceAsync(DenseTensor<float> tensor)
{
TensorFeed feed = new TensorFeed(new[] { InputShape[2], InputShape[3] }, Stride);
await feed.SetTensorAsync(tensor);
return await RunNet(feed);
}
/// <summary>
///
/// </summary>
/// <param name="tensor"></param>
/// <returns></returns>
public async Task<List<Models.Yolov7Predict>> InferenceAsync(TensorFeed tensor)
{
return await RunNet(tensor);
}
/// <summary>
/// start inference and return the predictions, support dynamic batch
/// </summary>
/// <param name="tensor">4 dimension only</param>
/// <param name="dhdws"></param>
/// <param name="ratios"></param>
/// <param name="imageShapes"></param>
/// <returns></returns>
public async Task<List<Models.Yolov7Predict>> RunNet(DenseTensor<float> tensor, List<float[]> dhdws, List<float[]> ratios, List<int[]> imageShapes)
{
long[] newDim = new[] { (long)tensor.Dimensions[0], tensor.Dimensions[1], tensor.Dimensions[2], tensor.Dimensions[3] };
var inputOrtValue = OrtValue.CreateTensorValueFromMemory(OrtMemoryInfo.DefaultInstance, tensor.Buffer, newDim);
var inputs = new Dictionary<string, OrtValue> { { _inputNames.First(), inputOrtValue } };
var fromResult = await Task.FromResult(Session.Run(_runOptions, inputs, _outputNames));
float[] resultArrays = fromResult[0].Value.GetTensorDataAsSpan<float>().ToArray();
inputOrtValue.Dispose();
fromResult.Dispose();
Models.Predictions predictions = new Models.Predictions(resultArrays, _categories.ToArray(), dhdws, ratios, imageShapes);
return predictions.GetDetect();
}
/// <summary>
/// start inference and return the predictions, support dynamic batch
/// </summary>
/// <param name="tensor">4 dimension only</param>
/// <param name="dhdws"></param>
/// <param name="ratios"></param>
/// <param name="imageShapes"></param>
/// <returns></returns>
public async Task<List<Models.Yolov7Predict>> RunNet(DenseTensor<Float16> tensor, List<float[]> dhdws, List<float[]> ratios, List<int[]> imageShapes)
{
long[] newDim = new[] { (long)tensor.Dimensions[0], tensor.Dimensions[1], tensor.Dimensions[2], tensor.Dimensions[3] };
var inputOrtValue = OrtValue.CreateTensorValueFromMemory(OrtMemoryInfo.DefaultInstance, tensor.Buffer, newDim);
var inputs = new Dictionary<string, OrtValue> { { _inputNames.First(), inputOrtValue } };
var fromResult = await Task.FromResult(Session.Run(_runOptions, inputs, _outputNames));
float[] resultArrays = fromResult[0].Value.GetTensorDataAsSpan<float>().ToArray();
inputOrtValue.Dispose();
fromResult.Dispose();
Models.Predictions predictions = new Models.Predictions(resultArrays, _categories.ToArray(), dhdws, ratios, imageShapes);
return predictions.GetDetect();
}
/// <summary>
/// start inference and return the predictions, support dynamic batch
/// </summary>
/// <param name="tensorFeed"></param>
/// <returns></returns>
public async Task<List<Models.Yolov7Predict>> RunNet(TensorFeed tensorFeed)
{
var feed = await tensorFeed.GetTensorAsync();
DenseTensor<float> tensor = feed.Item1;
long[] newDim = new[] { (long)tensor.Dimensions[0], tensor.Dimensions[1], tensor.Dimensions[2], tensor.Dimensions[3] };
var inputOrtValue = OrtValue.CreateTensorValueFromMemory(OrtMemoryInfo.DefaultInstance, tensor.Buffer, newDim);
var inputs = new Dictionary<string, OrtValue> { { _inputNames.First(), inputOrtValue } };
var fromResult = await Task.FromResult(Session.Run(_runOptions, inputs, _outputNames));
float[] resultArrays = fromResult[0].Value.GetTensorDataAsSpan<float>().ToArray();
inputOrtValue.Dispose();
fromResult.Dispose();
Models.Predictions predictions = new Models.Predictions(resultArrays, _categories.ToArray(), feed.Item2, feed.Item3, feed.Item4);
return predictions.GetDetect();
}
/// <summary>
/// GetAvailableProviders
/// </summary>
/// <returns></returns>
public List<string> GetAvailableProviders()
{
return OrtEnv.Instance().GetAvailableProviders().ToList();
}
/// <summary>
/// set
/// </summary>
/// <param name="ex"></param>
/// <param name="weight"></param>
/// <param name="byteWeight"></param>
/// <exception cref="Exception"></exception>
public void SetExcutionProvider(Yolov7NetService.ExecutionProvider ex, Yolov7NetService.Yolov7Weights? weight, byte[]? byteWeight)
{
switch (ex)
{
case Yolov7NetService.ExecutionProvider.CPU:
{
_sessionOptions = DefaultOptions();
TheLogger($"[{_prefix}][INIT][ExecutionProvider][CPU]");
break;
}
case Yolov7NetService.ExecutionProvider.CUDA:
{
_sessionOptions = DefaultOptions();
OrtCUDAProviderOptions providerOptions = new OrtCUDAProviderOptions();
var providerOptionsDict = new Dictionary<string, string>
{
["cudnn_conv_use_max_workspace"] = "1",
["device_id"] = "0"
};
providerOptions.UpdateOptions(providerOptionsDict);
_sessionOptions.AppendExecutionProvider_CUDA(providerOptions);
TheLogger($"[{_prefix}][INIT][ExecutionProvider][CUDA]");
break;
}
case Yolov7NetService.ExecutionProvider.TensorRT:
{
_sessionOptions = DefaultOptions();
OrtTensorRTProviderOptions provider = new OrtTensorRTProviderOptions();
var providerOptionsDict = new Dictionary<string, string>
{
["cudnn_conv_use_max_workspace"] = "1",
["device_id"] = "0",
["ORT_TENSORRT_FP16_ENABLE"] = "true",
["ORT_TENSORRT_LAYER_NORM_FP32_FALLBACK"] = "true",
["ORT_TENSORRT_ENGINE_CACHE_ENABLE"] = "true",
};
provider.UpdateOptions(providerOptionsDict);
_sessionOptions.AppendExecutionProvider_Tensorrt(provider);
TheLogger($"[{_prefix}][INIT][ExecutionProvider][Tensorrt]");
break;
}
case Yolov7NetService.ExecutionProvider.Azure:
{
_sessionOptions = DefaultOptions();
break;
}
case Yolov7NetService.ExecutionProvider.CoreML:
{
_sessionOptions = DefaultOptions();
break;
}
case Yolov7NetService.ExecutionProvider.DML:
{
_sessionOptions = DefaultOptions();
_sessionOptions.EnableMemoryPattern = false;
_sessionOptions.ExecutionMode = ExecutionMode.ORT_SEQUENTIAL;
_sessionOptions.AppendExecutionProvider_DML(1);
TheLogger($"[{_prefix}][INIT][ExecutionProvider][Dml]");
break;
}
case Yolov7NetService.ExecutionProvider.NNAPI:
{
_sessionOptions = DefaultOptions();
break;
}
case Yolov7NetService.ExecutionProvider.OpenCL:
{
_sessionOptions = DefaultOptions();
break;
}
case Yolov7NetService.ExecutionProvider.QNN:
{
_sessionOptions = DefaultOptions();
break;
}
case Yolov7NetService.ExecutionProvider.XNNPACK:
{
_sessionOptions = DefaultOptions();
break;
}
case Yolov7NetService.ExecutionProvider.OpenVINO:
{
_sessionOptions = DefaultOptions();
_sessionOptions.AppendExecutionProvider_OpenVINO();
_sessionOptions.GraphOptimizationLevel = GraphOptimizationLevel.ORT_DISABLE_ALL;
TheLogger($"[{_prefix}][INIT][ExecutionProvider][OpenVINO]");
break;
}
case Yolov7NetService.ExecutionProvider.oneDNN:
{
_sessionOptions = DefaultOptions();
break;
}
case Yolov7NetService.ExecutionProvider.DNNL:
{
_sessionOptions = DefaultOptions();
_sessionOptions.AppendExecutionProvider_Dnnl();
TheLogger($"[{_prefix}][INIT][ExecutionProvider][DNNL]");
break;
}
case Yolov7NetService.ExecutionProvider.ROCm:
{
_sessionOptions = DefaultOptions();
OrtROCMProviderOptions provider = new();
var providerOptionsDict = new Dictionary<string, string>
{
["device_id"] = "0",
["cudnn_conv_use_max_workspace"] = "1"
};
provider.UpdateOptions(providerOptionsDict);
_sessionOptions.AppendExecutionProvider_ROCm(provider);
TheLogger($"[{_prefix}][INIT][ExecutionProvider][ROCM]");
break;
}
}
var prepackedWeightsContainer = new PrePackedWeightsContainer();
_runOptions = new RunOptions();
if (weight is not null)
{
switch (weight)
{
case Yolov7NetService.Yolov7Weights.Yolov7:
{
Session = new InferenceSession(Properties.Resources.yolov7, _sessionOptions, prepackedWeightsContainer);
TheLogger($"[{_prefix}][INIT][Yolov7Weights][yolov7]");
break;
}
case Yolov7NetService.Yolov7Weights.Yolov7Tiny:
{
Session = new InferenceSession(Properties.Resources.yolov7_tiny, _sessionOptions, prepackedWeightsContainer);
TheLogger($"[{_prefix}][INIT][Yolov7Weights][yolov7_tiny]");
break;
}
default:
{
Session = new InferenceSession(Properties.Resources.yolov7_tiny, _sessionOptions, prepackedWeightsContainer);
TheLogger($"[{_prefix}][INIT][Yolov7Weights][yolov7_tiny]");
break;
}
}
}
else if (byteWeight is not null)
{
Session = new InferenceSession(byteWeight, _sessionOptions, prepackedWeightsContainer);
TheLogger($"[{_prefix}][INIT][Yolov7Weights][byte model]");
}
else
{
Session = new InferenceSession(Properties.Resources.yolov7_tiny, _sessionOptions, prepackedWeightsContainer);
TheLogger($"[{_prefix}][INIT][Yolov7Weights][yolov7_tiny]");
}
IoBinding = Session.CreateIoBinding();
var metadata = Session.ModelMetadata;
var customMetadata = metadata.CustomMetadataMap;
if (customMetadata.TryGetValue("names", out var categories))
{
if (categories != null)
{
try
{
var content = JsonConvert.DeserializeObject<List<string>>(categories);
if (content != null) _categories = content;
else
{
TheLogger($"[{_prefix}][Init][ERROR] not found categories in model metadata, creating name with syntax Named[ ? ]");
_categories = new List<string>();
for (var i = 0; i < 10000; i++)
{
_categories.Add($"Named[ {i} ]");
}
}
}
catch
{
TheLogger($"[{_prefix}][Init][ERROR] not found categories in model metadata, creating name with syntax Named[ ? ]");
_categories = new List<string>();
for (var i = 0; i < 10000; i++)
{
_categories.Add($"Named[ {i} ]");
}
}
}
else
{
TheLogger($"[{_prefix}][Init][ERROR] not found categories in model metadata, creating name with syntax Named[ ? ]");
_categories = new List<string>();
for (var i = 0; i < 10000; i++)
{
_categories.Add($"Named[ {i} ]");
}
}
}
else
{
TheLogger($"[{_prefix}][Init][ERROR] not found categories in model metadata, creating name with syntax Named[?]");
_categories = new List<string>();
for (var i = 0; i < 10000; i++)
{
_categories.Add($"Named[ {i} ]");
}
}
if (customMetadata.TryGetValue("stride", out string? stride))
{
if (stride != null)
{
try
{
var content = JsonConvert.DeserializeObject<List<float>>(stride);
if (content != null) Stride = (int)content.Last();
}
catch
{
Stride = 32;
TheLogger($"[{_prefix}][Init][ERROR][STRIDE] not found stride, set to default 32");
}
}
else
{
Stride = 32;
TheLogger($"[{_prefix}][Init][ERROR][STRIDE] not found stride, set to default 32");
}
}
else
{
Stride = 32;
TheLogger($"[{_prefix}][Init][ERROR][STRIDE] not found stride, set to default 32");
}
_inputNames = Session.InputNames;
_outputNames = Session.OutputNames;
InputShape = Session.InputMetadata.First().Value.Dimensions;
MemoryCache = new MemoryCache(new MemoryCacheOptions());
MemoryCache.Set("_runOptions", _runOptions);
MemoryCache.Set("_sessionOptions", _sessionOptions);
MemoryCache.Set("_session", Session);
if (_jsRuntime is not null) MemoryCache.Set("_jsRuntime", _jsRuntime);
}
/// <summary>
///
/// </summary>
/// <param name="cycle">total number loop</param>
/// <param name="batchSize">tensor batch size</param>
/// <returns>ElapsedMilliseconds during the entire loop</returns>
public async Task<float> WarmUp(int cycle, int batchSize)
{
Stopwatch sw = Stopwatch.StartNew();
sw.Start();
var shape = new[] { batchSize, InputShape[1], InputShape[2], InputShape[3] };
var dtype = Session.InputMetadata.Values.First().ElementDataType;
if (dtype == TensorElementType.Float16)
{
DenseTensor<Float16> tensor = new DenseTensor<Float16>(shape);
List<float[]> dwdh = new List<float[]>() { { new[] { 0f, 0 } } };
List<float[]> ratio = new List<float[]>() { { new[] { 1f, 1 } } };
List<int[]> imageShape = new List<int[]>() { { new[] { InputShape[0], InputShape[1] } } };
for (int i = 0; i < cycle; i++)
{
await RunNet(tensor, dwdh, ratio, imageShape);
}
sw.Stop();
return sw.ElapsedMilliseconds;
}
else
{
DenseTensor<float> tensor = new DenseTensor<float>(shape);
long[] newDim = new[] { (long)tensor.Dimensions[0], tensor.Dimensions[1], tensor.Dimensions[2], tensor.Dimensions[3] };
var inputOrtValue = OrtValue.CreateTensorValueFromMemory(OrtMemoryInfo.DefaultInstance, tensor.Buffer, newDim);
IoBinding.BindInput(_inputNames.First(), inputOrtValue);
IoBinding.BindOutputToDevice(_outputNames.Last(), OrtMemoryInfo.DefaultInstance);
IoBinding.SynchronizeBoundInputs();
for (int i = 0; i < cycle; i++)
{
using var a = Session.RunWithBoundResults(_runOptions, IoBinding);
}
sw.Stop();
return sw.ElapsedMilliseconds;
}
}
public void SetCategory(List<string> categories)
{
_categories = categories;
}
public void SetStride(int stride)
{
Stride = stride;
}
/// <summary>
/// release unused resource
/// </summary>
public void Dispose()
{
Dispose(disposing: true);
GC.SuppressFinalize(this);
}
/// <summary>
///
/// </summary>
/// <param name="disposing"></param>
protected virtual void Dispose(bool disposing)
{
if (_disposed) return;
if (disposing)
{
MemoryCache.Dispose();
_sessionOptions.Dispose();
Session.Dispose();
_runOptions.Dispose();
TheLogger("[ImageClassifyService][Dispose] disposed");
}
_disposed = true;
}
/// <summary>
/// support for bold web and other
/// </summary>
/// <param name="message"></param>
private void TheLogger(string message)
{
if (_jsRuntime is not null)
{
_jsRuntime.InvokeVoidAsync("console.log", message);
}
if (_logger is not null)
{
_logger.LogInformation("Log {log}", message);
}
}
/// <summary>
/// init new default SessionOption
/// </summary>
/// <returns></returns>
private SessionOptions DefaultOptions()
{
var sessionOptions = new SessionOptions();
sessionOptions.EnableMemoryPattern = true;
sessionOptions.EnableCpuMemArena = true;
sessionOptions.EnableProfiling = false;
sessionOptions.GraphOptimizationLevel = GraphOptimizationLevel.ORT_ENABLE_ALL;
sessionOptions.ExecutionMode = ExecutionMode.ORT_PARALLEL;
// sessionOptions.OptimizedModelFilePath = "D:\\Documents\\GitHub\\yolov7DotNet\\yolov7DotNet.onnx";
return sessionOptions;
}
}