-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
62 lines (52 loc) · 1.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class Solution:
def getPrimes(self, mx: int) -> List[int]:
primes = [2]
for i in range(3, mx + 1, 2):
is_prime = True
for p in primes:
if p * p > i:
break
if i % p == 0:
is_prime = False
break
if is_prime:
primes.append(i)
return primes
def primeSubOperation(self, nums: List[int]) -> bool:
mx = max(nums)
primes = self.getPrimes(mx)
nums = [0] + nums
for i in range(1, len(nums)):
v = nums[i]
for p in primes:
if v - p <= nums[i - 1]:
break
nums[i] = v - p
if nums[i] <= nums[i - 1]:
return False
return True
class Solution:
def getPrimes(self, mx: int) -> List[int]:
primes = [2]
for i in range(3, mx + 1, 2):
is_prime = True
for p in primes:
if p * p > i:
break
if i % p == 0:
is_prime = False
break
if is_prime:
primes.append(i)
return primes
def primeSubOperation(self, nums: List[int]) -> bool:
mx = max(nums)
primes = self.getPrimes(mx)
nums = [0] + nums
for i in range(1, len(nums)):
if nums[i] <= nums[i - 1]:
return False
j = bisect_left(primes, nums[i] - nums[i - 1]) - 1
if j >= 0:
nums[i] -= primes[j]
return True