-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlecture2_solution.v
228 lines (194 loc) · 6.74 KB
/
lecture2_solution.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
(******************************************************************************)
(* *)
(* LECTURE : Floating-point numbers and formal proof *)
(* Laurent.Thery@inria.fr 10/27/2013 *)
(* *)
(******************************************************************************)
(* Solutions of lecture 2 *)
Require Import Psatz Reals.
From Flocq Require Import Core.
Section Solution2.
Open Scope R_scope.
Variable F : R -> Prop. (* The predicate "to be a float" *)
Variable P : R -> R -> Prop. (* The relation
"to be a rounded value of" *)
Fact ex2 : round_pred_monotone (Rnd_DN_pt F). (* Rnd_Dn_pt monotone *)
Proof.
intros x y f g Rxf Rxg xLy.
destruct Rxf as [Ff [fLx fdown]].
destruct Rxg as [Fg [gLy gdown]].
apply gdown; try lra; assumption.
Qed.
(*
Prove that UP is also idempotent and monotone
*)
Fact ex3 : forall x, F x -> Rnd_UP_pt F x x.
Proof.
intros x Fx; repeat split; try lra; auto.
Qed.
Fact ex4 : round_pred_monotone (Rnd_UP_pt F).
Proof.
intros x y f g [Ff [xLf Hf]] [Fg [yLg Hg]] xLy.
apply Hf; try lra; auto.
Qed.
(*
Prove that ZR is idempotent but only monotone if 0 is a floating point number
*)
Fact ex5 : forall x, F x -> Rnd_ZR_pt F x x.
Proof.
intros x Fx; repeat split; try lra; auto.
Qed.
Fact ex6 : F 0 -> round_pred_monotone (Rnd_ZR_pt F).
Proof.
intros F0 x y f g [HPf HNf] [HPg HNg] xLy.
destruct (Rle_lt_dec 0 x) as [xPos | xNPos];
destruct (Rle_lt_dec 0 y) as [yPos | yNPos]; try lra.
- apply (ex2 x y); auto.
- assert (xNeg : x <= 0) by lra.
assert (f <= 0).
destruct (HNf xNeg) as [_ [_ H1f]].
apply H1f; auto.
assert (0 <= g).
destruct (HPg yPos) as [_ [_ H1g]].
apply H1g; auto.
lra.
- assert (xNeg : x <= 0) by lra.
assert (yNeg : y <= 0) by lra.
apply (ex4 x y); auto.
Qed.
(*
Hint:
In order to perform a case analysis on the fact that x is smaller to y or not
one can use the tactic "destruct (Rle_lt_dec x y) as [xLy | yLx]"
*)
Hypothesis SAF : satisfies_any F.
(*
Prove that DN, UP, ZR are rounding predicates
*)
Fact ex8 : round_pred (Rnd_DN_pt F).
Proof.
destruct SAF as [F0 Fsym DNtotal]; split; auto.
apply ex2.
Qed.
Fact ex9 : round_pred (Rnd_UP_pt F).
Proof.
destruct SAF as [F0 Fsym DNtotal].
split.
- intros x.
destruct (DNtotal (-x)) as [f [Ff [fLNx Pf]]].
exists (- f); repeat split; try lra.
apply Fsym; auto.
intros g Fx xLg.
assert (-g <= f).
apply Pf; try lra.
apply Fsym; auto.
lra.
- apply ex4.
Qed.
Fact ex10 : round_pred (Rnd_ZR_pt F).
Proof.
split.
- intros x.
destruct (Req_dec x 0) as [xE0 | xD0].
exists 0; rewrite xE0.
apply ex5; destruct SAF; auto.
destruct ex8 as [DP _].
destruct (DP x) as [f1 Hf1].
destruct ex9 as [UP _].
destruct (UP x) as [f2 Hf2].
destruct (Rle_dec 0 x) as [xPos | xNPos].
exists f1; split; try lra; auto.
exists f2; split; try lra; auto.
- apply ex6; destruct SAF; auto.
Qed.
(*
Prove that N is idempotent, that it is either UP or DOWN and that it is
strictly monotone
*)
Fact ex11 : forall x, F x -> Rnd_N_pt F x x.
Proof.
intros x Fx; split; auto.
intros g Fg.
assert (H : x - x = 0) by lra.
rewrite H, Rabs_R0.
apply Rabs_pos.
Qed.
Fact ex12 : forall x f, Rnd_N_pt F x f -> Rnd_DN_pt F x f \/ Rnd_UP_pt F x f.
Proof.
intros x f [Ff Pf].
destruct (Rle_dec x f) as [xLf|xGf].
- right; repeat split; auto.
intros g Fg xLg.
assert (Hg := Pf g Fg).
rewrite !Rabs_right in Hg; lra.
- left; repeat split; try lra; auto.
intros g Fg gLx.
assert (Hg := Pf g Fg).
rewrite !Rabs_left1 in Hg; lra.
Qed.
Fact ex13 : forall x y f g,
Rnd_N_pt F x f -> Rnd_N_pt F y g -> x < y -> f <= g.
Proof.
intros x y f g [Ff Pf] [Fg Pg] xLy.
assert (Hg := Pf g Fg).
assert (Hf := Pg f Ff).
destruct (Rle_dec f g) as [fLg|fGg]; try lra.
destruct (Rle_dec f x) as [fLx|fGx].
- rewrite !Rabs_left1 in Hg; try lra.
rewrite !Rabs_left1 in Hf; try lra.
- rewrite Rabs_right in Hg; try lra.
destruct (Rle_dec g x) as [gLx|gGx]; try lra.
rewrite Rabs_left1 in Hg; try lra.
rewrite Rabs_left1 in Hf; try lra.
destruct (Rle_dec f y) as [fLy|fGy]; try lra.
rewrite Rabs_left1 in Hf; try lra.
rewrite Rabs_right in Hf; try lra.
rewrite Rabs_right in Hg; try lra.
Qed.
(*
Hints : some theorems about absolute values
Check Rabs_R0.
Check Rabs_pos.
Check Rabs_right.
Check Rabs_left.
*)
Variable T : R -> R -> Prop. (* Tie-break rule *)
Definition Taway x f := Rabs f >= Rabs x.
(*
Prove that Taway verifies the two condition that are needed to build a
rounding mode
*)
Fact ex14 : NG_existence_prop F Taway.
Proof.
intros x d u NFx DNd UPu.
destruct (Rle_dec 0 x) as [xPos|xNPos].
- left; red.
destruct (UPu) as [Fu [xLu _]].
rewrite !Rabs_right; lra.
- right; red.
destruct (DNd) as [Fd [dLx _]].
rewrite !Rabs_left1; lra.
Qed.
Fact ex15 : F 0 -> Rnd_NG_pt_unique_prop F Taway.
Proof.
intros F0 x d u [Fd [dLx Pd]] [_ Nd] [Fu [xLu Pu]] [_ Nu].
unfold Taway.
destruct (Rle_dec 0 x) as [xPos|xNPos].
- rewrite (Rabs_right x); try lra.
assert (dPos : 0 <= d).
apply Pd; try lra; auto.
rewrite Rabs_right; try lra.
intros dGx _.
assert (xEd : x = d); try lra.
assert (HH := Nu d Fd).
rewrite !Rabs_right in HH; lra.
- rewrite (Rabs_left1 x); try lra.
assert (uNeg : u <= 0).
apply Pu; try lra; auto.
rewrite (Rabs_left1 u); try lra.
intros _ uLx.
assert (xEu : x = u); try lra.
assert (HH := Nd u Fu).
rewrite !Rabs_left1 in HH; lra.
Qed.
End Solution2.