-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocessing.js
99 lines (80 loc) · 3.09 KB
/
processing.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
var model;
//loading the model
async function loadModel(){
model = await tf.loadGraphModel('TFJS/model.json')
}
function predictImage() {
//get image from canvas
let image = cv.imread(canvas);
//convert to graysacale
cv.cvtColor(image, image, cv.COLOR_RGBA2GRAY, 0);
//apply thresholding
cv.threshold(image, image, 175, 255, cv.THRESH_BINARY);
//find the contours
let contours = new cv.MatVector();
let hierarchy = new cv.Mat();
cv.findContours(image, contours, hierarchy, cv.RETR_CCOMP, cv.CHAIN_APPROX_SIMPLE);
//bounding rectangle
let cnt = contours.get(0);
let rect = cv.boundingRect(cnt);
//region of interest method - crop image
image = image.roi(rect)
//image height and width
var height = image.rows;
var width = image.cols;
//resize image - mainly shrink the longer edge short edge will shrink accordingly
if(height > width) {
height = 20;
const scaleFactor = image.rows/height;
width = Math.round(image.cols/scaleFactor);
}
else {
width = 20;
const scaleFactor = image.cols/width;
height = Math.round(image.rows/scaleFactor);
}
//size of new image
let newSize = new cv.Size(width, height);
//resizing image according to MNIST database
cv.resize(image, image, newSize, 0, 0, cv.INTER_AREA);
//add padding on each side to make image to 28x28 pixel format
const LEFT = Math.ceil(4 + (20 - width)/2);
const RIGHT = Math.floor(4 + (20 - width)/2);
const TOP = Math.ceil(4 + (20 - height)/2);
const BOTTOM = Math.floor(4 + (20 - height)/2);
const BLACK = new cv.Scalar(0, 0, 0, 0);
cv.copyMakeBorder(image, image, TOP, BOTTOM, LEFT, RIGHT, cv.BORDER_CONSTANT, BLACK);
//find the centre of mass of image using image moments(weighted averages such as mean, median, etc.)
cv.findContours(image, contours, hierarchy, cv.RETR_CCOMP, cv.CHAIN_APPROX_SIMPLE);
cnt = contours.get(0);
const Moments = cv.moments(cnt, false); //false as image is not a binary image
const cx = Moments.m10 / Moments.m00; //x coordinate of com
const cy = Moments.m01 / Moments.m00; //y coordinate of com
//shift the image to get the centre of mass to centre of image
const x_shift = Math.round(image.cols/2.0 - cx);
const y_shift = Math.round(image.rows/2.0 - cy);
newSize = new cv.Size(image.cols, image.rows);
const M = cv.matFromArray(2, 3, cv.CV_64FC1, [1, 0, x_shift, 0, 1, y_shift]); //transformation matrix of size 2x3 and values [[1, 0, x_shift];[0, 1, y_shift]]
cv.warpAffine(image, image, M, newSize, cv.INTER_LINEAR, cv.BORDER_CONSTANT, BLACK) //shifting image
//normalise the pixel values
let pixelValues = image.data;
pixelValues = Float32Array.from(pixelValues); //conver array from int to floating point numbers
pixelValues = pixelValues.map(function(pixel) {
return pixel / 255.0;
});
//create a tensor and make a prediction
const X = tf.tensor([pixelValues]); //making a 2d tensor
const result = model.predict(X);
result.print();
//get result from model
const output = result.dataSync()[0];
//delete objects and tensors - for memory management
image.delete();
contours.delete();
cnt.delete();
hierarchy.delete();
M.delete();
X.dispose();
result.dispose();
return output;
}