-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpwned_replication_plus_analyses.R
413 lines (345 loc) · 15.5 KB
/
pwned_replication_plus_analyses.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# Replicating + Additional Analyses
# s.e. + plots + regressions
# -------
# Set dir.
setwd(githubdir)
setwd("pwned_dev/")
# Load dat
yg <- read.csv("data/YGOV1058_profile.csv")
pwn <- read.csv("data/YGOV1058_pwned.csv")
# load libs
library(tidyverse)
library(splines)
library(stargazer)
library(xtable)
# Join or die
fin_dat <- yg %>% left_join(pwn)
# lowercase names
names(fin_dat) <- tolower(names(fin_dat))
# Total rows
nrow(fin_dat)
# Number breached
length(unique(pwn$id))
# Create a vector of 1/0 using NAs from join so that NA is 0 and else is 1
sum(is.na(pwn$PwnCount))
fin_dat$pwn <- ifelse(is.na(fin_dat$pwncount), 0, 1)
# Descriptive stuff
counts <- fin_dat %>%
group_by(id) %>%
summarize(n = sum(pwn))
# Mean/median/range
summary(counts$n)
# Group by gender
counts <- fin_dat %>%
group_by(id, gender) %>%
summarize(n = sum(pwn)) %>%
group_by(gender) %>%
summarize(n = mean(n))
# Everything else should work. Let's go to filtering
fin_small_dat <- subset(fin_dat, (is.na(isverified) | isverified == T) & (is.na(isspamlist) | isspamlist == F))
counts <- fin_small_dat %>%
group_by(id, gender) %>%
summarize(n = sum(pwn)) %>%
group_by(gender) %>%
summarize(n = mean(n))
## ID level pwn
pwn_id <- fin_dat[, c('id', 'pwn')] %>%
group_by(id) %>%
summarize(total_pwn = sum(pwn))
# Inner join to profile
fin_id_dat <- pwn_id %>%
inner_join(fin_dat)
# Unique
fin_id_dat <- fin_id_dat[!duplicated(fin_id_dat$id), ]
# Means and s.e. by race, sex, age, and education
## Recoding
fin_id_dat$educ <- car::recode(fin_id_dat$educ, "1 = 'No HS';
2 = 'HS Grad.';
3 = 'Some College';
4 = '2-year College Degree';
5 = '4-year College Degree';
6 = 'Postgrad Degree'",
as.factor = T,
levels = c("No HS", "HS Grad.", "Some College", "2-year College Degree", "4-year College Degree", "Postgrad Degree"))
fin_id_dat$race <- car::recode(fin_id_dat$race, "1 = 'White';
2 = 'Black';
3 = 'Hispanic/Latino';
4 = 'Asian';
5 = 'Native American';
6 = 'Middle Eastern';
7 = 'Mixed Race';
8 = 'Other'",
as.factor = T,
levels = c("White", "Black", "Hispanic/Latino", "Asian", "Native American", "Middle Eastern", "Mixed Race", "Other"))
fin_id_dat$gender <- car::recode(fin_id_dat$gender, "1 = 'Male';
2 = 'Female'",
as.factor = T,
levels = c("Female", "Male"))
fin_id_educ <- fin_id_dat %>%
group_by(educ) %>%
summarise(mean_pwn = mean(total_pwn), se = sd(total_pwn)/sqrt(n()))
fin_id_race <- fin_id_dat %>%
group_by(race) %>%
summarise(mean_pwn = mean(total_pwn), se = sd(total_pwn)/sqrt(n()))
fin_id_sex <- fin_id_dat %>%
group_by(gender) %>%
summarise(mean_pwn = mean(total_pwn), se = sd(total_pwn)/sqrt(n()))
# Recode Age
fin_id_dat$age = 2018 - fin_id_dat$birthyr
fin_id_dat$agecat = cut(fin_id_dat$age, breaks = c(18, 25, 35, 50, 65, 100), right = T, ordered_result = T)
fin_id_age <- fin_id_dat %>%
group_by(agecat) %>%
summarise(mean_pwn = mean(total_pwn), se = sd(total_pwn)/sqrt(n()))
## Output a Table
fin_res <- data.frame("Sociodemographics" = NA, mean = NA, se = NA)
fin_res[1, 1] <- "Age"
fin_res[2:(nrow(fin_id_age) + 1), 1] <- as.character(fin_id_age$agecat)
fin_res[2:(nrow(fin_id_age) + 1), 2:3] <- fin_id_age[, 2:3]
fin_res[7, 1] <- "Missing"
fin_res[8, 1] <- ""
fin_res[9, 1] <- "Education"
fin_res[10:(nrow(fin_id_educ) + 9), 1] <- as.character(fin_id_educ$educ)
fin_res[10:(nrow(fin_id_educ) + 9), 2:3] <- fin_id_educ[, 2:3]
fin_res[16, 1] <- ""
fin_res[17, 1] <- "Sex"
fin_res[18:(nrow(fin_id_sex) + 17), 1] <- as.character(fin_id_sex$gender)
fin_res[18:(nrow(fin_id_sex) + 17), 2:3] <- fin_id_sex[, 2:3]
fin_res[20, 1] <- ""
fin_res[21, 1] <- "Race"
fin_res[22:(nrow(fin_id_race) + 21), 1] <- as.character(fin_id_race$race)
fin_res[22:(nrow(fin_id_race) + 21), 2:3] <- fin_id_race[, 2:3]
names(fin_res)[1] <- ""
print(xtable(fin_res,
label = "table:socdem_dat",
caption = "Frequency of Account Breaches By Socio-economic Factors"),
caption.placement = "top",
size = "\\small",
include.rownames = F,
heading_command = NULL,
sanitize.text.function = function(x) {x},
table.placement = "!htb",
file = "tabs/tab2_freq_se_by_group.tex")
# Do some plots
# Custom ggplot theme
cust_theme <- theme_minimal() +
theme(panel.grid.major = element_line(color = "#e1e1e1", linetype = "dotted"),
panel.grid.minor = element_blank(),
legend.position = "bottom",
legend.key = element_blank(),
legend.key.width = unit(1, "cm"),
axis.title = element_text(size = 10, color = "#555555"),
axis.text = element_text(size = 10, color = "#555555"),
axis.title.x = element_text(vjust = 1, margin = margin(10, 0, 0, 0)),
axis.title.y = element_text(vjust = 1),
axis.ticks = element_line(color = "#e1e1e1", linetype = "dotted", size = .2),
axis.text.x = element_text(vjust = .3),
plot.margin = unit(c(.5, .75, .5, .5), "cm"))
# Do some plots
# Custom ggplot theme
cust_present_theme <- theme_minimal() +
theme(plot.background = element_rect(fill = "black"),
panel.background = element_rect(fill = 'black', colour = '#bcbcbc', size = .2),
panel.grid.major = element_line(color = "#bcbcbc", linetype = "dotted", size = 0.2),
panel.grid.minor = element_blank(),
legend.position = "bottom",
legend.key = element_blank(),
legend.key.width = unit(1, "cm"),
axis.title = element_text(size = 10, color = "#dadada"),
axis.text = element_text(size = 10, color = "#cacaca"),
axis.title.x = element_text(vjust = 1, margin = margin(10, 0, 0, 0)),
axis.title.y = element_text(vjust = 1),
axis.ticks = element_line(color = "#c1c1c1", linetype = "dotted", size = .2),
axis.text.x = element_text(vjust = .3),
plot.margin = unit(c(.5, .75, .5, .5), "cm"))
ggplot(fin_id_dat, aes(age, total_pwn)) +
geom_point(alpha = .05) +
geom_smooth(method = "loess") +
scale_x_continuous("Age", limits = c(18, 100), breaks = seq(20, 100, 10), labels = seq(20, 100, 10)) +
ylab("Number of Accounts Breached") +
cust_theme
ggsave("figs/age_pwned.pdf")
ggsave("figs/age_pwned.png")
# Present
ggplot(fin_id_dat, aes(age, total_pwn)) +
geom_point(alpha = .05, color = "#bcbcbc") +
geom_smooth(method = "loess", color = "#fdbc00") +
scale_x_continuous("Age", limits = c(18, 100), breaks = seq(20, 100, 10), labels = seq(20, 100, 10)) +
ylab("Number of Accounts Breached") +
cust_present_theme
ggsave("figs/age_pwned_present.pdf", scale = 1, dpi = 150, width = 3.5, height = 3.5)
ggplot(fin_id_educ, aes(x = educ, y = mean_pwn)) +
geom_point(stat = "identity", color = "#777777") +
geom_errorbar(aes(ymin = mean_pwn - 1.96*se, ymax = mean_pwn + 1.96*se), width = .03, color = "#A7A7A7", linetype = "dotted") +
ylab("Average Number of Accounts Breached") +
xlab("") +
cust_theme +
coord_flip()
ggsave("figs/educ_pwned.pdf")
ggsave("figs/educ_pwned.png")
ggplot(fin_id_educ, aes(x = educ, y = mean_pwn)) +
geom_point(stat = "identity", color = "#fdbc00") +
geom_errorbar(aes(ymin = mean_pwn - 1.96*se, ymax = mean_pwn + 1.96*se), width = .03, color = "#fecd00", size = .3) +
ylab("Average Number of Accounts Breached") +
xlab("") +
cust_present_theme +
coord_flip()
ggsave("figs/educ_pwned_present.pdf", width = 4.5, height = 3.9)
ggplot(fin_id_race, aes(x = race, y = mean_pwn)) +
geom_point(stat = "identity", color = "#777777") +
geom_errorbar(aes(ymin = mean_pwn - 1.96*se, ymax = mean_pwn + 1.96*se), width = .03, color = "#A7A7A7", linetype = "dotted") +
ylab("Average Number of Accounts Breached") +
xlab("") +
cust_theme +
coord_flip()
ggsave("figs/race_pwned.pdf")
ggsave("figs/race_pwned.png")
ggplot(fin_id_race, aes(x = race, y = mean_pwn)) +
geom_point(stat = "identity", color = "#fdbc00") +
geom_errorbar(aes(ymin = mean_pwn - 1.96*se, ymax = mean_pwn + 1.96*se), width = .03, color = "#fecd00", size = .3) +
ylab("Average Number of Accounts Breached") +
xlab("") +
cust_present_theme +
coord_flip()
ggsave("figs/race_pwned_present.pdf", width = 4.5, height = 3.9)
ggplot(fin_id_sex, aes(x = gender, y = mean_pwn)) +
geom_point(stat = "identity", color = "#777777") +
geom_errorbar(aes(ymin = mean_pwn - 1.96*se, ymax = mean_pwn + 1.96*se), width = .03, color = "#A7A7A7", linetype = "dotted") +
ylab("Average Number of Accounts Breached") +
xlab("") +
cust_theme +
coord_flip()
ggsave("figs/sex_pwned.pdf")
ggsave("figs/sex_pwned.png")
ggplot(fin_id_sex, aes(x = gender, y = mean_pwn)) +
geom_point(stat = "identity", color = "#fdbc00") +
geom_errorbar(aes(ymin = mean_pwn - 1.96*se, ymax = mean_pwn + 1.96*se), width = .03, color = "#fecd00", size = .3) +
ylab("Average Number of Accounts Breached") +
xlab("") +
cust_present_theme +
coord_flip()
ggsave("figs/sex_pwned_present.pdf", width = 4.5, height = 3.9)
# Run some regressions
educ_lm <- lm(total_pwn ~ educ, data = fin_id_dat)
race_lm <- lm(total_pwn ~ race, data = fin_id_dat)
sex_lm <- lm(total_pwn ~ gender, data = fin_id_dat)
age_lm <- lm(total_pwn ~ as.factor(agecat), data = fin_id_dat)
age_lm2 <- lm(total_pwn ~ ns(age, 2), data = fin_id_dat)
stargazer(educ_lm,
title = "Number of Breaches by Education",
digits = 2,
label = "tab:educ_breaches",
initial.zero = FALSE,
dep.var.labels = "Number of Breaches",
omit.stat = c("LL", "ser", "f"),
no.space = TRUE,
covariate.labels = c("HS Grad.", "Some College", "2-year College Degree", "4-year College Degree", "Postgrad Degree"),
out = "tabs/educ_pwned.tex")
stargazer(race_lm,
title = "Number of Breaches by Race/Ethnicity",
digits = 2,
label = "tab:race_breaches",
initial.zero = FALSE,
dep.var.labels = "Number of Breaches",
omit.stat = c("LL", "ser", "f"),
no.space = TRUE,
covariate.labels = c("Black", "Hispanic/Latino", "Asian", "Native American", "Middle Eastern", "Mixed Race", "Other"),
out = "tabs/race_pwned.tex")
stargazer(sex_lm,
title = "Number of Breaches by Sex",
digits = 2,
label = "tab:sex_breaches",
initial.zero = FALSE,
dep.var.labels = "Number of Breaches",
omit.stat = c("LL", "ser", "f"),
no.space = TRUE,
covariate.labels = "Male",
out = "tabs/sex_pwned.tex")
stargazer(age_lm2,
title = "Number of Breaches by Age",
digits = 2,
label = "tab:age_breaches",
initial.zero = FALSE,
dep.var.labels = "Number of Breaches",
omit.stat = c("LL", "ser", "f"),
no.space = TRUE,
out = "tabs/age_pwned.tex")
## Spam List
# Everything else should work. Let's go to filtering
fin_dat <- subset(fin_dat, (is.na(isverified) | isverified == T) & (is.na(isspamlist) | isspamlist == F))
## ID level pwn
pwn_id <- fin_dat[, c('id', 'pwn')] %>%
group_by(id) %>%
summarize(total_pwn = sum(pwn))
# Inner join to profile
fin_id_dat <- pwn_id %>%
inner_join(fin_dat)
# Unique
fin_id_dat <- fin_id_dat[!duplicated(fin_id_dat$id), ]
# Means and s.e. by race, sex, age, and education
## Recoding
fin_id_dat$educ <- car::recode(fin_id_dat$educ, "1 = 'No HS';
2 = 'HS Grad.';
3 = 'Some College';
4 = '2-year College Degree';
5 = '4-year College Degree';
6 = 'Postgrad Degree'",
as.factor = T,
levels = c("No HS", "HS Grad.", "Some College", "2-year College Degree", "4-year College Degree", "Postgrad Degree"))
fin_id_dat$race <- car::recode(fin_id_dat$race, "1 = 'White';
2 = 'Black';
3 = 'Hispanic/Latino';
4 = 'Asian';
5 = 'Native American';
6 = 'Middle Eastern';
7 = 'Mixed Race';
8 = 'Other'",
as.factor = T,
levels = c("White", "Black", "Hispanic/Latino", "Asian", "Native American", "Middle Eastern", "Mixed Race", "Other"))
fin_id_dat$gender <- car::recode(fin_id_dat$gender, "1 = 'Male';
2 = 'Female'",
as.factor = T,
levels = c("Female", "Male"))
fin_id_educ <- fin_id_dat %>%
group_by(educ) %>%
summarise(mean_pwn = mean(total_pwn), se = sd(total_pwn)/sqrt(n()))
fin_id_race <- fin_id_dat %>%
group_by(race) %>%
summarise(mean_pwn = mean(total_pwn), se = sd(total_pwn)/sqrt(n()))
fin_id_sex <- fin_id_dat %>%
group_by(gender) %>%
summarise(mean_pwn = mean(total_pwn), se = sd(total_pwn)/sqrt(n()))
# Recode Age
fin_id_dat$age = 2018 - fin_id_dat$birthyr
fin_id_dat$agecat = cut(fin_id_dat$age, breaks = c(18, 25, 35, 50, 65, 100), right = T, ordered_result = T)
fin_id_age <- fin_id_dat %>%
group_by(agecat) %>%
summarise(mean_pwn = mean(total_pwn), se = sd(total_pwn)/sqrt(n()))
## Output a Table
fin_res <- data.frame("Sociodemographics" = NA, mean = NA, se = NA)
fin_res[1, 1] <- "Age"
fin_res[2:(nrow(fin_id_age) + 1), 1] <- as.character(fin_id_age$agecat)
fin_res[2:(nrow(fin_id_age) + 1), 2:3] <- fin_id_age[, 2:3]
fin_res[7, 1] <- "Missing"
fin_res[8, 1] <- ""
fin_res[9, 1] <- "Education"
fin_res[10:(nrow(fin_id_educ) + 9), 1] <- as.character(fin_id_educ$educ)
fin_res[10:(nrow(fin_id_educ) + 9), 2:3] <- fin_id_educ[, 2:3]
fin_res[16, 1] <- ""
fin_res[17, 1] <- "Sex"
fin_res[18:(nrow(fin_id_sex) + 17), 1] <- as.character(fin_id_sex$gender)
fin_res[18:(nrow(fin_id_sex) + 17), 2:3] <- fin_id_sex[, 2:3]
fin_res[20, 1] <- ""
fin_res[21, 1] <- "Race"
fin_res[22:(nrow(fin_id_race) + 21), 1] <- as.character(fin_id_race$race)
fin_res[22:(nrow(fin_id_race) + 21), 2:3] <- fin_id_race[, 2:3]
names(fin_res)[1] <- ""
print(xtable(fin_res,
label = "table:socdem_verified_dat",
caption = "Frequency of Verified, Non-SpamList Account Breaches By Socioeconomic Factors."),
caption.placement = "top",
size = "\\small",
include.rownames = F,
heading_command = NULL,
sanitize.text.function = function(x) {x},
table.placement = "!htb",
file = "tabs/tab4_freq_se_by_validate_group.tex")