Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix bugs perturbation notebook #94

Open
wants to merge 5 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,6 @@
"sphinx.ext.autosummary",
"scanpydoc.elegant_typehints",
"scanpydoc.definition_list_typed_field",
"scanpydoc.autosummary_generate_imported",
*[p.stem for p in (HERE / "extensions").glob("*.py")],
]

Expand Down Expand Up @@ -75,6 +74,7 @@
todo_include_todos = False
numpydoc_show_class_members = False
annotate_defaults = True
autosummary_generate_imported = True
# The master toctree document.
master_doc = "index"

Expand Down
60 changes: 36 additions & 24 deletions docs/tutorials/scgen_perturbation_prediction.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,8 @@
"outputs": [],
"source": [
"import sys\n",
"#if branch is stable, will install via pypi, else will install from source\n",
"\n",
"# if branch is stable, will install via pypi, else will install from source\n",
"branch = \"stable\"\n",
"IN_COLAB = \"google.colab\" in sys.modules\n",
"\n",
Expand Down Expand Up @@ -78,8 +79,10 @@
}
],
"source": [
"train = sc.read(\"./tests/data/train_kang.h5ad\",\n",
" backup_url='https://drive.google.com/uc?id=1r87vhoLLq6PXAYdmyyd89zG90eJOFYLk')"
"train = sc.read(\n",
" \"./tests/data/train_kang.h5ad\",\n",
" backup_url=\"https://drive.google.com/uc?id=1r87vhoLLq6PXAYdmyyd89zG90eJOFYLk\",\n",
")"
]
},
{
Expand All @@ -95,8 +98,9 @@
"metadata": {},
"outputs": [],
"source": [
"train_new = train[~((train.obs[\"cell_type\"] == \"CD4T\") &\n",
" (train.obs[\"condition\"] == \"stimulated\"))]"
"train_new = train[\n",
" ~((train.obs[\"cell_type\"] == \"CD4T\") & (train.obs[\"condition\"] == \"stimulated\"))\n",
"].copy()"
]
},
{
Expand Down Expand Up @@ -198,10 +202,7 @@
],
"source": [
"model.train(\n",
" max_epochs=100,\n",
" batch_size=32,\n",
" early_stopping=True,\n",
" early_stopping_patience=25\n",
" max_epochs=100, batch_size=32, early_stopping=True, early_stopping_patience=25\n",
")"
]
},
Expand Down Expand Up @@ -258,8 +259,13 @@
"source": [
"sc.pp.neighbors(latent_adata)\n",
"sc.tl.umap(latent_adata)\n",
"sc.pl.umap(latent_adata, color=['condition', 'cell_type'], wspace=0.4, frameon=False,\n",
" save='latentspace_batch32_klw000005_z100__100e.pdf')"
"sc.pl.umap(\n",
" latent_adata,\n",
" color=[\"condition\", \"cell_type\"],\n",
" wspace=0.4,\n",
" frameon=False,\n",
" save=\"latentspace_batch32_klw000005_z100__100e.pdf\",\n",
")"
]
},
{
Expand Down Expand Up @@ -339,11 +345,9 @@
],
"source": [
"pred, delta = model.predict(\n",
" ctrl_key='control',\n",
" stim_key='stimulated',\n",
" celltype_to_predict='CD4T'\n",
" ctrl_key=\"control\", stim_key=\"stimulated\", celltype_to_predict=\"CD4T\"\n",
")\n",
"pred.obs['condition'] = 'pred'"
"pred.obs[\"condition\"] = \"pred\""
]
},
{
Expand Down Expand Up @@ -380,8 +384,12 @@
"metadata": {},
"outputs": [],
"source": [
"ctrl_adata = train[((train.obs['cell_type'] == 'CD4T') & (train.obs['condition'] == 'control'))]\n",
"stim_adata = train[((train.obs['cell_type'] == 'CD4T') & (train.obs['condition'] == 'stimulated'))]"
"ctrl_adata = train[\n",
" ((train.obs[\"cell_type\"] == \"CD4T\") & (train.obs[\"condition\"] == \"control\"))\n",
"]\n",
"stim_adata = train[\n",
" ((train.obs[\"cell_type\"] == \"CD4T\") & (train.obs[\"condition\"] == \"stimulated\"))\n",
"]"
]
},
{
Expand Down Expand Up @@ -433,8 +441,12 @@
],
"source": [
"sc.tl.pca(eval_adata)\n",
"sc.pl.pca(eval_adata, color=\"condition\", frameon=False,\n",
" save='pred_stim_b32_klw000005_z100__100e.pdf')"
"sc.pl.pca(\n",
" eval_adata,\n",
" color=\"condition\",\n",
" frameon=False,\n",
" save=\"pred_stim_b32_klw000005_z100__100e.pdf\",\n",
")"
]
},
{
Expand Down Expand Up @@ -466,7 +478,7 @@
}
],
"source": [
"CD4T = train[train.obs[\"cell_type\"] ==\"CD4T\"]"
"CD4T = train[train.obs[\"cell_type\"] == \"CD4T\"]"
]
},
{
Expand Down Expand Up @@ -527,7 +539,7 @@
" labels={\"x\": \"predicted\", \"y\": \"ground truth\"},\n",
" path_to_save=\"./reg_mean1.pdf\",\n",
" show=True,\n",
" legend=False\n",
" legend=False,\n",
")"
]
},
Expand Down Expand Up @@ -567,11 +579,11 @@
" eval_adata,\n",
" axis_keys={\"x\": \"pred\", \"y\": \"stimulated\"},\n",
" gene_list=diff_genes[:10],\n",
" top_100_genes= diff_genes,\n",
" labels={\"x\": \"predicted\",\"y\": \"ground truth\"},\n",
" top_100_genes=diff_genes,\n",
" labels={\"x\": \"predicted\", \"y\": \"ground truth\"},\n",
" path_to_save=\"./reg_mean1.pdf\",\n",
" show=True,\n",
" legend=False\n",
" legend=False,\n",
")"
]
},
Expand Down
3 changes: 2 additions & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,8 @@ scanpydoc = {version = ">=0.5", optional = true}
scikit-misc = {version = ">=0.1.3", optional = true}
scvi-tools = ">=0.20.0"
seaborn = ">=0.11"
sphinx = {version = ">=4.1,<4.4", optional = true}
numpy = "<2.0.0"
sphinx = {version = ">=5.0", optional = true}
sphinx-autodoc-typehints = {version = "*", optional = true}
sphinx-material = {version = "*", optional = true}
typing_extensions = {version = "*", python = "<3.8"}
Expand Down
6 changes: 3 additions & 3 deletions scgen/_scgen.py
Original file line number Diff line number Diff line change
Expand Up @@ -284,7 +284,7 @@ def batch_removal(self, adata: Optional[AnnData] = None) -> AnnData:
adata_raw = AnnData(X=adata.raw.X, var=adata.raw.var)
adata_raw.obs_names = adata.obs_names
corrected.raw = adata_raw
corrected.obsm["latent"] = all_shared_ann[corrected.obs_names,:].X
corrected.obsm["latent"] = all_shared_ann[corrected.obs_names, :].X
corrected.obsm["corrected_latent"] = self.get_latent_representation(
corrected
)
Expand Down Expand Up @@ -314,7 +314,7 @@ def batch_removal(self, adata: Optional[AnnData] = None) -> AnnData:
adata_raw = AnnData(X=adata.raw.X, var=adata.raw.var)
adata_raw.obs_names = adata.obs_names
corrected.raw = adata_raw
corrected.obsm["latent"] = all_corrected_data[corrected.obs_names,:].X
corrected.obsm["latent"] = all_corrected_data[corrected.obs_names, :].X
corrected.obsm["corrected_latent"] = self.get_latent_representation(
corrected
)
Expand Down Expand Up @@ -447,7 +447,7 @@ def reg_mean_plot(
x=x,
y=y,
arrowprops=dict(arrowstyle="->", color="grey", lw=0.5),
force_points=(0.0, 0.0),
force_static=(0.0, 0.0),
)
if legend:
pyplot.legend(loc="center left", bbox_to_anchor=(1, 0.5))
Expand Down
Loading