-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathobject_tracker.py
165 lines (140 loc) · 6.25 KB
/
object_tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import time, random
import numpy as np
from absl import app, flags, logging
from absl.flags import FLAGS
import cv2
import matplotlib.pyplot as plt
import tensorflow as tf
from yolov3_tf2.models import (
YoloV3, YoloV3Tiny
)
from yolov3_tf2.dataset import transform_images
from yolov3_tf2.utils import draw_outputs, convert_boxes
from deep_sort import preprocessing
from deep_sort import nn_matching
from deep_sort.detection import Detection
from deep_sort.tracker import Tracker
from tools import generate_detections as gdet
from PIL import Image
flags.DEFINE_string('classes', './data/labels/coco.names', 'path to classes file')
flags.DEFINE_string('weights', './weights/yolov3.tf',
'path to weights file')
flags.DEFINE_boolean('tiny', False, 'yolov3 or yolov3-tiny')
flags.DEFINE_integer('size', 416, 'resize images to')
flags.DEFINE_string('video', './data/video/test.mp4',
'path to video file or number for webcam)')
flags.DEFINE_string('output', None, 'path to output video')
flags.DEFINE_string('output_format', 'XVID', 'codec used in VideoWriter when saving video to file')
flags.DEFINE_integer('num_classes', 80, 'number of classes in the model')
def main(_argv):
# Definition of the parameters
max_cosine_distance = 0.5
nn_budget = None
nms_max_overlap = 1.0
#initialize deep sort
model_filename = 'model_data/mars-small128.pb'
encoder = gdet.create_box_encoder(model_filename, batch_size=1)
metric = nn_matching.NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget)
tracker = Tracker(metric)
physical_devices = tf.config.experimental.list_physical_devices('GPU')
if len(physical_devices) > 0:
tf.config.experimental.set_memory_growth(physical_devices[0], True)
if FLAGS.tiny:
yolo = YoloV3Tiny(classes=FLAGS.num_classes)
else:
yolo = YoloV3(classes=FLAGS.num_classes)
yolo.load_weights(FLAGS.weights)
logging.info('weights loaded')
class_names = [c.strip() for c in open(FLAGS.classes).readlines()]
logging.info('classes loaded')
try:
vid = cv2.VideoCapture(int(FLAGS.video))
except:
vid = cv2.VideoCapture(FLAGS.video)
out = None
if FLAGS.output:
# by default VideoCapture returns float instead of int
width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(vid.get(cv2.CAP_PROP_FPS))
codec = cv2.VideoWriter_fourcc(*FLAGS.output_format)
out = cv2.VideoWriter(FLAGS.output, codec, fps, (width, height))
list_file = open('detection.txt', 'w')
frame_index = -1
fps = 0.0
count = 0
while True:
_, img = vid.read()
if img is None:
logging.warning("Empty Frame")
time.sleep(0.1)
count+=1
if count < 3:
continue
else:
break
img_in = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_in = tf.expand_dims(img_in, 0)
img_in = transform_images(img_in, FLAGS.size)
t1 = time.time()
boxes, scores, classes, nums = yolo.predict(img_in)
classes = classes[0]
names = []
for i in range(len(classes)):
names.append(class_names[int(classes[i])])
names = np.array(names)
converted_boxes = convert_boxes(img, boxes[0])
features = encoder(img, converted_boxes)
detections = [Detection(bbox, score, class_name, feature) for bbox, score, class_name, feature in zip(converted_boxes, scores[0], names, features)]
#initialize color map
cmap = plt.get_cmap('tab20b')
colors = [cmap(i)[:3] for i in np.linspace(0, 1, 20)]
# run non-maxima suppresion
boxs = np.array([d.tlwh for d in detections])
scores = np.array([d.confidence for d in detections])
classes = np.array([d.class_name for d in detections])
indices = preprocessing.non_max_suppression(boxs, classes, nms_max_overlap, scores)
detections = [detections[i] for i in indices]
# Call the tracker
tracker.predict()
tracker.update(detections)
for track in tracker.tracks:
if not track.is_confirmed() or track.time_since_update > 1:
continue
bbox = track.to_tlbr()
class_name = track.get_class()
color = colors[int(track.track_id) % len(colors)]
color = [i * 255 for i in color]
cv2.rectangle(img, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), color, 2)
cv2.rectangle(img, (int(bbox[0]), int(bbox[1]-30)), (int(bbox[0])+(len(class_name)+len(str(track.track_id)))*17, int(bbox[1])), color, -1)
cv2.putText(img, class_name + "-" + str(track.track_id),(int(bbox[0]), int(bbox[1]-10)),0, 0.75, (255,255,255),2)
### UNCOMMENT BELOW IF YOU WANT CONSTANTLY CHANGING YOLO DETECTIONS TO BE SHOWN ON SCREEN
#for det in detections:
# bbox = det.to_tlbr()
# cv2.rectangle(img,(int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])),(255,0,0), 2)
# print fps on screen
fps = ( fps + (1./(time.time()-t1)) ) / 2
cv2.putText(img, "FPS: {:.2f}".format(fps), (0, 30),
cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 2)
cv2.imshow('output', img)
if FLAGS.output:
out.write(img)
frame_index = frame_index + 1
list_file.write(str(frame_index)+' ')
if len(converted_boxes) != 0:
for i in range(0,len(converted_boxes)):
list_file.write(str(converted_boxes[i][0]) + ' '+str(converted_boxes[i][1]) + ' '+str(converted_boxes[i][2]) + ' '+str(converted_boxes[i][3]) + ' ')
list_file.write('\n')
# press q to quit
if cv2.waitKey(1) == ord('q'):
break
vid.release()
if FLAGS.output:
out.release()
list_file.close()
cv2.destroyAllWindows()
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass