-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathevaluate_translation.py
197 lines (153 loc) · 7.63 KB
/
evaluate_translation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
import numpy as np
import torch
from tqdm.auto import tqdm
from gluonts.dataset.field_names import FieldName
from gluonts.dataset.loader import InferenceDataLoader
from gluonts.dataset.repository.datasets import get_dataset
from gluonts.torch.batchify import batchify
from gluonts.torch.model.deepar.estimator import DeepAREstimator
from gluonts.transform import InstanceSplitter, TestSplitSampler
from utils import PREDICTION_INPUT_NAMES, change_device, get_FS_network, ts_iter
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default=None, help='dataset name')
parser.add_argument('--context_length', type=int, required=True, help='model\'s context length')
parser.add_argument('--prediction_length', type=int, required=True, help='model\'s prediction length')
parser.add_argument('--model_type', type=str, required=True, help='forecaster type, e.g., vanilla or RT')
parser.add_argument('--model_path', type=str, required=True, help='path to model checkpoint')
parser.add_argument('--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu', help='cpu or cuda w/ number specified')
parser.add_argument('--batch_size', type=int, default=128, help='batch size for adversarial attack')
parser.add_argument('--trial_number', type=int, default=None, help='repetitive experiment index for keeping data from multiple trials')
args = parser.parse_args()
dataset_name = args.dataset
dataset = get_dataset(dataset_name, regenerate=False)
prediction_length = args.prediction_length
context_length = args.context_length
device = args.device
batch_size = args.batch_size
estimator = DeepAREstimator(
prediction_length=prediction_length,
context_length=context_length,
freq=dataset.metadata.freq,
)
net = get_FS_network(estimator, args.model_path, device)
instance_sampler = TestSplitSampler()
instance_splitter = InstanceSplitter(
target_field=FieldName.TARGET,
is_pad_field=FieldName.IS_PAD,
start_field=FieldName.START,
forecast_start_field=FieldName.FORECAST_START,
instance_sampler=instance_sampler,
past_length=net.model._past_length + prediction_length + 3,
future_length=prediction_length,
time_series_fields=[
FieldName.FEAT_TIME,
FieldName.OBSERVED_VALUES,
],
dummy_value=estimator.distr_output.value_in_support
)
loader = InferenceDataLoader(
dataset.test,
transform=estimator.create_transformation() + instance_splitter,
batch_size=batch_size,
stack_fn=lambda data: batchify(data, device),
)
tss = list(ts_iter(dataset.test, dataset.metadata.freq))
perturbation_levels = [-0.9, -0.8, -0.5, -0.2, -0.1, 0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 4.0, 9.0]
sigmas = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
num_parallel_samples = 100
original_forecasts = {sigma: [] for sigma in [0.0] + sigmas}
translated_forecasts = {pert: {sigma: [] for sigma in [0.0] + sigmas} for pert in perturbation_levels}
num_batches = 0
for i, batch in tqdm(enumerate(loader), leave=True):
print("Batch ", i)
batch_size = batch['past_target'].shape[0]
for key in PREDICTION_INPUT_NAMES:
batch[key] = change_device(batch[key], device)
### Basic/smoothed inference on original inputs
original_inputs = []
for key in PREDICTION_INPUT_NAMES:
if key == 'past_target' or key == 'past_observed_values':
original_inputs.append(batch[key][:, :-prediction_length - 1])
elif key == 'past_time_feat':
original_inputs.append(batch[key][:, :-prediction_length - 1, :])
elif key == 'future_time_feat':
original_inputs.append(batch['past_time_feat'][:, -prediction_length - 1: -1, :])
else:
original_inputs.append(batch[key])
outputs, _ = net.model(*original_inputs, num_parallel_samples=num_parallel_samples)
original_forecasts[0.0].append(outputs.detach().cpu().numpy())
del outputs
torch.cuda.empty_cache()
for sigma in sigmas:
outputs, _ = net.model(*original_inputs, num_parallel_samples=num_parallel_samples, intermediate_noise=sigma)
original_forecasts[sigma].append(
outputs.detach().cpu().numpy()
)
del outputs
torch.cuda.empty_cache()
del original_inputs
torch.cuda.empty_cache()
### Basic/smoothed inference on translated inputs
for pert in perturbation_levels:
### Perturb the "latest" index
pert_idx = [-prediction_length - 1]
original_vals = batch['past_target'][:, pert_idx].clone()
batch['past_target'][:, pert_idx] = (1 + pert) * original_vals
translated_inputs = []
for key in PREDICTION_INPUT_NAMES:
if key == 'past_target' or key == 'past_observed_values':
translated_inputs.append(batch[key][:, 1: -prediction_length])
elif key == 'past_time_feat':
translated_inputs.append(batch[key][:, 1: -prediction_length, :])
elif key == 'future_time_feat':
translated_inputs.append(batch['past_time_feat'][:, -prediction_length:, :])
else:
translated_inputs.append(batch[key])
translated_outputs, _ = net.model(*translated_inputs, num_parallel_samples=num_parallel_samples, noise_lag_index=1)
translated_forecasts[pert][0.0].append(translated_outputs.detach().cpu().numpy())
del translated_outputs
torch.cuda.empty_cache()
for sigma in sigmas:
outputs, _ = net.model(*translated_inputs, num_parallel_samples=num_parallel_samples, intermediate_noise=sigma, noise_lag_index=1)
translated_forecasts[pert][sigma].append(
outputs.detach().cpu().numpy()
)
del outputs
torch.cuda.empty_cache()
### Restore the original "latest" index
batch['past_target'][:, pert_idx] = original_vals
del original_vals, translated_inputs
torch.cuda.empty_cache()
num_batches += 1
break
table = []
for pert in perturbation_levels:
row = []
for sigma in [0.0] + sigmas:
denom = sum([np.sum(np.abs(np.average(original_forecasts[sigma][i][:, :, 1:], axis=1)))
for i in range(num_batches)])
row.append(sum([
np.sum(
np.abs(
np.average(original_forecasts[sigma][i][:, :, 1:], axis=1) - \
np.average(translated_forecasts[pert][sigma][i][:, :, :-1], axis=1)
)
)
for i in range(num_batches)
]) / denom)
table.append(np.array(row))
if args.trial_number is not None:
filename = './translation_metrics/' + dataset_name + '_' + args.model_type + '_translation_test_' \
+ str(args.trial_number) + '.npy'
else:
filename = './translation_metrics/' + dataset_name + '_' + args.model_type + '_translation_test.npy'
np.save(
file=filename, arr=table
)
# Output test code
# np.set_printoptions(precision=3)
# table = np.array(table)
# np.set_printoptions(precision=3)
# print(table)