-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstart_pipeline.py
190 lines (159 loc) · 6.3 KB
/
start_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import sys
import argparse
import cv2
from own_darknet import darknet
from control import control_interface, init_interface, reset_object, shutdown_server
import tensorflow as tf
import numpy as np
from ctypes import *
import math
import random
import os
import time
netMain = None
metaMain = None
altNames = None
buffer = []
buffer_size = 3
labels = ['fist', 'ok', 'palm', 'thumb down', 'thumb up']
classifier = None
def add_line_to_buffer(line):
global buffer
buffer.append(line)
buffer = buffer[-buffer_size:]
def convertBack(x, y, w, h):
xmin = int(round(x - (w / 2)))
xmax = int(round(x + (w / 2)))
ymin = int(round(y - (h / 2)))
ymax = int(round(y + (h / 2)))
return xmin, ymin, xmax, ymax
def cvDrawBoxes(detections, img, label):
for detection in detections:
x, y, w, h = detection[2][0],\
detection[2][1],\
detection[2][2],\
detection[2][3]
xmin, ymin, xmax, ymax = convertBack(
float(x), float(y), float(w), float(h))
pt1 = (xmin, ymin)
pt2 = (xmax, ymax)
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 1)
cv2.putText(img,
label +
" [" + str(round(detection[1] * 100, 2)) + "]",
(pt1[0], pt1[1] - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
[0, 255, 0], 2)
return img
def init_yolov4():
global metaMain, netMain, altNames
configPath = "./own_darknet/cfg/yolo-hand.cfg"
weightPath = "./own_darknet/yolo-hand_last.weights"
metaPath = "./own_darknet/data/obj.data"
if not os.path.exists(configPath):
raise ValueError("Invalid config path `" +
os.path.abspath(configPath)+"`")
if not os.path.exists(weightPath):
raise ValueError("Invalid weight path `" +
os.path.abspath(weightPath)+"`")
if not os.path.exists(metaPath):
raise ValueError("Invalid data file path `" +
os.path.abspath(metaPath)+"`")
if netMain is None:
netMain = darknet.load_net_custom(configPath.encode(
"ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1
if metaMain is None:
metaMain = darknet.load_meta(metaPath.encode("ascii"))
if altNames is None:
try:
with open(metaPath) as metaFH:
metaContents = metaFH.read()
import re
match = re.search("names *= *(.*)$", metaContents,
re.IGNORECASE | re.MULTILINE)
if match:
result = match.group(1)
else:
result = None
try:
if os.path.exists(result):
with open(result) as namesFH:
namesList = namesFH.read().strip().split("\n")
altNames = [x.strip() for x in namesList]
except TypeError:
pass
except Exception:
pass
def darknet_image_transform(frame):
darknet_image = darknet.make_image(darknet.network_width(netMain),
darknet.network_height(netMain),3)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb,
(darknet.network_width(netMain),
darknet.network_height(netMain)),
interpolation=cv2.INTER_LINEAR)
darknet.copy_image_from_bytes(darknet_image,frame_resized.tobytes())
return darknet_image, frame_resized
def classify_detection(image, detection):
width_margin = int(darknet.network_width(netMain) / 10)
height_margin = int(darknet.network_height(netMain) / 10)
x, y, w, h = detection[2][0],\
detection[2][1],\
detection[2][2],\
detection[2][3]
xmin, ymin, xmax, ymax = convertBack(float(x), float(y), float(w), float(h))
seg = image[max(ymin - height_margin,0):ymax + height_margin,\
max(xmin - width_margin,0):xmax + width_margin]
cv2.imshow('seg', seg)
resize = cv2.resize(seg, dsize=(224,224))
batch_img = np.expand_dims(cv2.cvtColor(resize, cv2.COLOR_BGR2RGB)/255, axis=0)
scores = classifier.predict(batch_img)
print(scores)
label = labels[np.argmax(scores)]
return label
def new_pipeline():
init_yolov4()
global classifier
classifier = tf.keras.models.load_model("./resnet_v2_50_1")
vc = cv2.VideoCapture(0)
vc.set(3, 1280)
vc.set(4, 720)
if vc.isOpened(): # try to get the first frame
rval, frame = vc.read()
else:
rval = False
while rval:
darknet_image = darknet.make_image(darknet.network_width(netMain),
darknet.network_height(netMain),3)
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame_resized = cv2.resize(frame_rgb,
(darknet.network_width(netMain),
darknet.network_height(netMain)),
interpolation=cv2.INTER_LINEAR)
darknet.copy_image_from_bytes(darknet_image,frame_resized.tobytes())
detections = darknet.detect_image(netMain, metaMain, darknet_image, thresh=0.25)
detections = list(map(list, detections))
if len(detections) != 0:
detections = [detections[0]]
for detection in detections:
# if detection[1] < 0.5:
# continue
print(detection)
# add_line_to_buffer(detection[2])
# detection[2] = np.mean(buffer, axis=0)
label = classify_detection(frame_resized, detection)
image = cvDrawBoxes([detection], frame_resized, label)
frame = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
frame = cv2.resize(frame, (1280, 720), interpolation=cv2.INTER_LINEAR)
cv2.imshow("raw", frame)
rval, frame = vc.read()
key = cv2.waitKey(3)
if key == 27: # exit on ESC
break
cv2.destroyAllWindows()
vc.release()
if __name__ == "__main__":
ap = argparse.ArgumentParser()
ap.add_argument('-p', '--port', default=10000, help='Port for Bleder')
args = ap.parse_args()
new_pipeline()
# demo(args)