This repository has been archived by the owner on Jun 9, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain_temporal_ensembling_model.py
199 lines (160 loc) · 9.42 KB
/
train_temporal_ensembling_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import math
import queue
import numpy as np
import tensorflow as tf
import tensorflow.contrib.eager as tfe
# Enable Eager Execution
tf.enable_eager_execution()
from svnh_loader import SvnhLoader
from tfrecord_loader import TfrecordLoader
from pi_model import PiModel, temporal_ensembling_gradients, ramp_up_function, ramp_down_function
def main():
# Constants variables
NUM_TRAIN_SAMPLES = 73257
NUM_TEST_SAMPLES = 26032
# Editable variables
num_labeled_samples = 3000
num_validation_samples = 1000
num_train_unlabeled_samples = NUM_TRAIN_SAMPLES - \
num_labeled_samples - num_validation_samples
batch_size = 150
epochs = 300
max_learning_rate = 0.0002 # 0.001 as recomended in the paper leads to unstable training.
initial_beta1 = 0.9
final_beta1 = 0.5
alpha = 0.6
max_unsupervised_weight = 30 * num_labeled_samples / \
(NUM_TRAIN_SAMPLES - num_validation_samples)
checkpoint_directory = './checkpoints/TemporalEnsemblingModel'
tensorboard_logs_directory = './logs/TemporalEnsemblingModel'
# Assign it as tfe.variable since we will change it across epochs
learning_rate = tfe.Variable(max_learning_rate)
beta_1 = tfe.Variable(initial_beta1)
# Download and Save Dataset in Tfrecords
loader = SvnhLoader('./data', NUM_TRAIN_SAMPLES,
num_validation_samples, num_labeled_samples)
loader.download_images_and_generate_tf_record()
# You can replace it by the real ratio (preferably with a big batch size : num_labeled_samples / num_train_unlabeled_samples
# This means that the labeled batch size will be labeled_batch_fraction * batch_size and the unlabeled batch size will be
# (1-labeled_batch_fraction) * batch_size
labeled_batch_fraction = num_labeled_samples / num_train_unlabeled_samples
batches_per_epoch = round(
num_labeled_samples/(batch_size * labeled_batch_fraction))
# Generate data loaders
train_labeled_iterator, train_unlabeled_iterator, validation_iterator, test_iterator = loader.load_dataset(
batch_size, epochs+1000, labeled_batch_fraction, 1.0 - labeled_batch_fraction, shuffle=True)
batches_per_epoch_val = int(round(num_validation_samples / batch_size))
model = PiModel()
# Paper has beta2=0.990 but I experimented decreasing it a little bit (as recomended in the paper) and it led
# to more stable training
optimizer = tf.train.AdamOptimizer(
learning_rate=learning_rate, beta1=beta_1, beta2=0.980)
best_val_accuracy = 0
global_step = tf.train.get_or_create_global_step()
writer = tf.contrib.summary.create_file_writer(tensorboard_logs_directory)
writer.set_as_default()
# Ensemble predictions - the first samples of the array are for the labeled samples
# and the remaining ones are for the unlabeled samples.
# The Z and z are the notation used in the paper
Z = np.zeros((NUM_TRAIN_SAMPLES, 10))
z = np.zeros((NUM_TRAIN_SAMPLES, 10))
# variable needed if you use a batch ratio different than the true ratio
sample_epoch = np.zeros((NUM_TRAIN_SAMPLES, 1))
for epoch in range(epochs):
rampdown_value = ramp_down_function(epoch, epochs)
# In the paper the authors use 80 as the epoch with max rampup_value
rampup_value = ramp_up_function(epoch, 40)
if epoch == 0:
unsupervised_weight = 0
else:
unsupervised_weight = max_unsupervised_weight * \
rampup_value
learning_rate.assign(rampup_value * rampdown_value * max_learning_rate)
beta_1.assign(rampdown_value * initial_beta1 +
(1.0 - rampdown_value) * final_beta1)
epoch_loss_avg = tfe.metrics.Mean()
epoch_accuracy = tfe.metrics.Accuracy()
epoch_loss_avg_val = tfe.metrics.Mean()
epoch_accuracy_val = tfe.metrics.Accuracy()
for batch_nr in range(batches_per_epoch):
X_labeled_train, y_labeled_train, labeled_indexes = train_labeled_iterator.get_next()
X_unlabeled_train, _, unlabeled_indexes = train_unlabeled_iterator.get_next()
# We need to correct labeled samples indexes (in Z the first num_labeled_samples samples are for ensemble labeled predictions)
current_ensemble_indexes = np.concatenate(
[labeled_indexes.numpy(), unlabeled_indexes.numpy() + num_labeled_samples])
current_ensemble_targets = z[current_ensemble_indexes]
current_outputs, loss_val, grads = temporal_ensembling_gradients(X_labeled_train, y_labeled_train, X_unlabeled_train,
model, unsupervised_weight, current_ensemble_targets)
optimizer.apply_gradients(zip(grads, model.variables),
global_step=global_step)
epoch_loss_avg(loss_val)
epoch_accuracy(tf.argmax(model(X_labeled_train), 1),
tf.argmax(y_labeled_train, 1))
epoch_loss_avg(loss_val)
epoch_accuracy(
tf.argmax(model(X_labeled_train), 1), tf.argmax(y_labeled_train, 1))
Z[current_ensemble_indexes, :] = alpha * \
Z[current_ensemble_indexes, :] + (1-alpha) * current_outputs
z[current_ensemble_indexes, :] = Z[current_ensemble_indexes, :] * \
(1. / (1. - alpha **
(sample_epoch[current_ensemble_indexes] + 1)))
sample_epoch[current_ensemble_indexes] += 1
if (batch_nr == batches_per_epoch - 1):
for batch_val_nr in range(batches_per_epoch_val):
X_val, y_val, _ = validation_iterator.get_next()
y_val_predictions = model(X_val, training=False)
epoch_loss_avg_val(tf.losses.softmax_cross_entropy(
y_val, y_val_predictions))
epoch_accuracy_val(
tf.argmax(y_val_predictions, 1), tf.argmax(y_val, 1))
print("Epoch {:03d}/{:03d}: Train Loss: {:9.7f}, Train Accuracy: {:02.6%}, Validation Loss: {:9.7f}, "
"Validation Accuracy: {:02.6%}, lr={:.9f}, unsupervised weight={:5.3f}, beta1={:.9f}".format(epoch+1,
epochs,
epoch_loss_avg.result(),
epoch_accuracy.result(),
epoch_loss_avg_val.result(),
epoch_accuracy_val.result(),
learning_rate.numpy(),
unsupervised_weight,
beta_1.numpy()))
# If the accuracy of validation improves save a checkpoint
if best_val_accuracy < epoch_accuracy_val.result():
best_val_accuracy = epoch_accuracy_val.result()
checkpoint = tfe.Checkpoint(optimizer=optimizer,
model=model,
optimizer_step=global_step)
checkpoint.save(file_prefix=checkpoint_directory)
# Record summaries
with tf.contrib.summary.record_summaries_every_n_global_steps(1):
tf.contrib.summary.scalar('Train Loss', epoch_loss_avg.result())
tf.contrib.summary.scalar(
'Train Accuracy', epoch_accuracy.result())
tf.contrib.summary.scalar(
'Validation Loss', epoch_loss_avg_val.result())
tf.contrib.summary.histogram(
'Z', tf.convert_to_tensor(Z), step=global_step)
tf.contrib.summary.histogram(
'z', tf.convert_to_tensor(z), step=global_step)
tf.contrib.summary.scalar(
'Validation Accuracy', epoch_accuracy_val.result())
tf.contrib.summary.scalar(
'Unsupervised Weight', unsupervised_weight)
tf.contrib.summary.scalar('Learning Rate', learning_rate.numpy())
tf.contrib.summary.scalar('Ramp Up Function', rampup_value)
tf.contrib.summary.scalar('Ramp Down Function', rampdown_value)
print('\nTrain Ended! Best Validation accuracy = {}\n'.format(best_val_accuracy))
# Load the best model
root = tfe.Checkpoint(optimizer=optimizer,
model=model,
optimizer_step=tf.train.get_or_create_global_step())
root.restore(tf.train.latest_checkpoint(checkpoint_directory))
# Evaluate on the final test set
num_test_batches = math.ceil(NUM_TEST_SAMPLES/batch_size)
test_accuracy = tfe.metrics.Accuracy()
for test_batch in range(num_test_batches):
X_test, y_test, _ = test_iterator.get_next()
y_test_predictions = model(X_test, training=False)
test_accuracy(tf.argmax(y_test_predictions, 1), tf.argmax(y_test, 1))
print("Final Test Accuracy: {:.6%}".format(test_accuracy.result()))
if __name__ == "__main__":
main()