Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add ORC reader tutorial #1465

Merged
merged 10 commits into from
Jul 26, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion docs/tutorials/_toc.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -36,4 +36,5 @@ toc:
path: /io/tutorials/elasticsearch
- title: "Avro"
path: /io/tutorials/avro

- title: "ORC"
path: /io/tutorials/orc
333 changes: 333 additions & 0 deletions docs/tutorials/orc.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,333 @@
{
oliverhu marked this conversation as resolved.
Show resolved Hide resolved
oliverhu marked this conversation as resolved.
Show resolved Hide resolved
oliverhu marked this conversation as resolved.
Show resolved Hide resolved
kvignesh1420 marked this conversation as resolved.
Show resolved Hide resolved
oliverhu marked this conversation as resolved.
Show resolved Hide resolved
oliverhu marked this conversation as resolved.
Show resolved Hide resolved
oliverhu marked this conversation as resolved.
Show resolved Hide resolved
oliverhu marked this conversation as resolved.
Show resolved Hide resolved
oliverhu marked this conversation as resolved.
Show resolved Hide resolved
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "Tce3stUlHN0L"
},
"source": [
"##### Copyright 2021 The TensorFlow Authors."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"cellView": "form",
"id": "tuOe1ymfHZPu"
},
"outputs": [],
"source": [
"#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"# you may not use this file except in compliance with the License.\n",
"# You may obtain a copy of the License at\n",
"#\n",
"# https://www.apache.org/licenses/LICENSE-2.0\n",
"#\n",
"# Unless required by applicable law or agreed to in writing, software\n",
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"# See the License for the specific language governing permissions and\n",
"# limitations under the License."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qFdPvlXBOdUN"
},
"source": [
"# Apache ORC Reader"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MfBg1C5NB3X0"
},
"source": [
"<table class=\"tfo-notebook-buttons\" align=\"left\">\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://www.tensorflow.org/io/tutorials/orc\"><img src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" />View on TensorFlow.org</a>\n",
" </td>\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/io/blob/master/docs/tutorials/orc.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n",
" </td>\n",
" <td>\n",
" <a target=\"_blank\" href=\"https://github.com/tensorflow/io/blob/master/docs/tutorials/orc.ipynb\"><img src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" />View on GitHub</a>\n",
" </td>\n",
" <td>\n",
" <a href=\"https://storage.googleapis.com/tensorflow_docs/io/docs/tutorials/orc.ipynb\"><img src=\"https://www.tensorflow.org/images/download_logo_32px.png\" />Download notebook</a>\n",
" </td>\n",
"</table>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xHxb-dlhMIzW"
},
"source": [
"## Overview\n",
"\n",
"Apache ORC is a popular columnar storage format. tensorflow-io package provides a default implementation of reading [Apache ORC](https://orc.apache.org/) files."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "MUXex9ctTuDB"
},
"source": [
"## Setup"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "1Eh-iCRVBm0p"
},
"source": [
"Install required packages, and restart runtime\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "g7cxbf1-skn6"
},
"outputs": [],
"source": [
"!pip install tensorflow-io"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "IqR2PQG4ZaZ0"
},
"outputs": [],
"source": [
"import tensorflow as tf\n",
"import tensorflow_io as tfio"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EyHfC3nEzseN"
},
"source": [
"### Download a sample dataset file in ORC"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZjEeF6Fva8UO"
},
"source": [
"The dataset you will use here is the [Iris Data Set](https://archive.ics.uci.edu/ml/datasets/iris) from UCI. The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. It has 4 attributes: (1) sepal length, (2) sepal width, (3) petal length, (4) petal width, and the last column contains the class label."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "zaiXjZiXzrHs"
},
"outputs": [],
"source": [
"!curl -OL https://github.com/tensorflow/io/raw/master/tests/test_orc/iris.orc\n",
"!ls -l iris.orc"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7DG9JTJ0-bzg"
},
"source": [
"## Create a dataset from the file"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"id": "ppFAjXAYsj-z"
},
"outputs": [],
"source": [
"dataset = tfio.IODataset.from_orc(\"iris.orc\", capacity=15).batch(1)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4xPr3f4LVdeN"
},
"source": [
"Examine the dataset:"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"id": "9B1QUKG70Lzs"
},
"outputs": [],
"source": [
"for item in dataset.take(1):\n",
" print(item)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "03qncHJPVNK3"
},
"source": [
"Let's walk through an end-to-end example of tf.keras model training with ORC dataset based on iris dataset."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tDkpKRMVcPfb"
},
"source": [
"### Data preprocessing"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nDgkfWFRVjKz"
},
"source": [
"Configure which columns are features, and which column is label:"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"id": "R1OYAybz07dr"
},
"outputs": [],
"source": [
"feature_cols = [\"sepal_length\", \"sepal_width\", \"petal_length\", \"petal_width\"]\n",
"label_cols = [\"species\"]\n",
"\n",
"# select feature columns\n",
"feature_dataset = tfio.IODataset.from_orc(\"iris.orc\", columns=feature_cols)\n",
"# select label columns\n",
"label_dataset = tfio.IODataset.from_orc(\"iris.orc\", columns=label_cols)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GSYMP48vVvV0"
},
"source": [
"A util function to map species to float numbers for model training:"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"id": "TQvuE7OgVs1q"
},
"outputs": [],
"source": [
"vocab_init = tf.lookup.KeyValueTensorInitializer(\n",
" keys=tf.constant([\"virginica\", \"versicolor\", \"setosa\"]),\n",
" values=tf.constant([0, 1, 2], dtype=tf.int64))\n",
"vocab_table = tf.lookup.StaticVocabularyTable(\n",
" vocab_init,\n",
" num_oov_buckets=4)"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"id": "lpf0w41iWAZ4"
},
"outputs": [],
"source": [
"label_dataset = label_dataset.map(vocab_table.lookup)\n",
"dataset = tf.data.Dataset.zip((feature_dataset, label_dataset))\n",
"dataset = dataset.batch(1)\n",
"\n",
"def pack_features_vector(features, labels):\n",
" \"\"\"Pack the features into a single array.\"\"\"\n",
" features = tf.stack(list(features), axis=1)\n",
" return features, labels\n",
"\n",
"dataset = dataset.map(pack_features_vector)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "R1Tyf3AodC2Y"
},
"source": [
"## Build, compile and train the model"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "oVB9Q0B-WDn4"
},
"source": [
"Finally, you are ready to build the model and train it! You will build a 3 layer keras model to predict the class of the iris plant from the dataset you just processed."
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"id": "tToy0FoOWG-9"
},
"outputs": [],
"source": [
"model = tf.keras.Sequential(\n",
" [\n",
" tf.keras.layers.Dense(\n",
" 10, activation=tf.nn.relu, input_shape=(4,)\n",
" ),\n",
" tf.keras.layers.Dense(10, activation=tf.nn.relu),\n",
" tf.keras.layers.Dense(3),\n",
" ]\n",
")\n",
"\n",
"model.compile(optimizer=\"adam\", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[\"accuracy\"])\n",
"model.fit(dataset, epochs=5)"
]
}
],
"metadata": {
"colab": {
"collapsed_sections": [
"Tce3stUlHN0L"
],
"name": "orc.ipynb",
"toc_visible": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 0
}