diff --git a/docs/tutorials/_toc.yaml b/docs/tutorials/_toc.yaml
index 1c2ee891d..7edeee8bf 100644
--- a/docs/tutorials/_toc.yaml
+++ b/docs/tutorials/_toc.yaml
@@ -36,4 +36,5 @@ toc:
path: /io/tutorials/elasticsearch
- title: "Avro"
path: /io/tutorials/avro
-
+- title: "ORC"
+ path: /io/tutorials/orc
diff --git a/docs/tutorials/orc.ipynb b/docs/tutorials/orc.ipynb
new file mode 100644
index 000000000..e94ac6cf3
--- /dev/null
+++ b/docs/tutorials/orc.ipynb
@@ -0,0 +1,333 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Tce3stUlHN0L"
+ },
+ "source": [
+ "##### Copyright 2021 The TensorFlow Authors."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "cellView": "form",
+ "id": "tuOe1ymfHZPu"
+ },
+ "outputs": [],
+ "source": [
+ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
+ "# you may not use this file except in compliance with the License.\n",
+ "# You may obtain a copy of the License at\n",
+ "#\n",
+ "# https://www.apache.org/licenses/LICENSE-2.0\n",
+ "#\n",
+ "# Unless required by applicable law or agreed to in writing, software\n",
+ "# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
+ "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
+ "# See the License for the specific language governing permissions and\n",
+ "# limitations under the License."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "qFdPvlXBOdUN"
+ },
+ "source": [
+ "# Apache ORC Reader"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "MfBg1C5NB3X0"
+ },
+ "source": [
+ "
"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "xHxb-dlhMIzW"
+ },
+ "source": [
+ "## Overview\n",
+ "\n",
+ "Apache ORC is a popular columnar storage format. tensorflow-io package provides a default implementation of reading [Apache ORC](https://orc.apache.org/) files."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "MUXex9ctTuDB"
+ },
+ "source": [
+ "## Setup"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "1Eh-iCRVBm0p"
+ },
+ "source": [
+ "Install required packages, and restart runtime\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "id": "g7cxbf1-skn6"
+ },
+ "outputs": [],
+ "source": [
+ "!pip install tensorflow-io"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "id": "IqR2PQG4ZaZ0"
+ },
+ "outputs": [],
+ "source": [
+ "import tensorflow as tf\n",
+ "import tensorflow_io as tfio"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "EyHfC3nEzseN"
+ },
+ "source": [
+ "### Download a sample dataset file in ORC"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ZjEeF6Fva8UO"
+ },
+ "source": [
+ "The dataset you will use here is the [Iris Data Set](https://archive.ics.uci.edu/ml/datasets/iris) from UCI. The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. It has 4 attributes: (1) sepal length, (2) sepal width, (3) petal length, (4) petal width, and the last column contains the class label."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "id": "zaiXjZiXzrHs"
+ },
+ "outputs": [],
+ "source": [
+ "!curl -OL https://github.com/tensorflow/io/raw/master/tests/test_orc/iris.orc\n",
+ "!ls -l iris.orc"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "7DG9JTJ0-bzg"
+ },
+ "source": [
+ "## Create a dataset from the file"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "id": "ppFAjXAYsj-z"
+ },
+ "outputs": [],
+ "source": [
+ "dataset = tfio.IODataset.from_orc(\"iris.orc\", capacity=15).batch(1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "4xPr3f4LVdeN"
+ },
+ "source": [
+ "Examine the dataset:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "id": "9B1QUKG70Lzs"
+ },
+ "outputs": [],
+ "source": [
+ "for item in dataset.take(1):\n",
+ " print(item)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "03qncHJPVNK3"
+ },
+ "source": [
+ "Let's walk through an end-to-end example of tf.keras model training with ORC dataset based on iris dataset."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "tDkpKRMVcPfb"
+ },
+ "source": [
+ "### Data preprocessing"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "nDgkfWFRVjKz"
+ },
+ "source": [
+ "Configure which columns are features, and which column is label:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "id": "R1OYAybz07dr"
+ },
+ "outputs": [],
+ "source": [
+ "feature_cols = [\"sepal_length\", \"sepal_width\", \"petal_length\", \"petal_width\"]\n",
+ "label_cols = [\"species\"]\n",
+ "\n",
+ "# select feature columns\n",
+ "feature_dataset = tfio.IODataset.from_orc(\"iris.orc\", columns=feature_cols)\n",
+ "# select label columns\n",
+ "label_dataset = tfio.IODataset.from_orc(\"iris.orc\", columns=label_cols)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "GSYMP48vVvV0"
+ },
+ "source": [
+ "A util function to map species to float numbers for model training:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "id": "TQvuE7OgVs1q"
+ },
+ "outputs": [],
+ "source": [
+ "vocab_init = tf.lookup.KeyValueTensorInitializer(\n",
+ " keys=tf.constant([\"virginica\", \"versicolor\", \"setosa\"]),\n",
+ " values=tf.constant([0, 1, 2], dtype=tf.int64))\n",
+ "vocab_table = tf.lookup.StaticVocabularyTable(\n",
+ " vocab_init,\n",
+ " num_oov_buckets=4)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {
+ "id": "lpf0w41iWAZ4"
+ },
+ "outputs": [],
+ "source": [
+ "label_dataset = label_dataset.map(vocab_table.lookup)\n",
+ "dataset = tf.data.Dataset.zip((feature_dataset, label_dataset))\n",
+ "dataset = dataset.batch(1)\n",
+ "\n",
+ "def pack_features_vector(features, labels):\n",
+ " \"\"\"Pack the features into a single array.\"\"\"\n",
+ " features = tf.stack(list(features), axis=1)\n",
+ " return features, labels\n",
+ "\n",
+ "dataset = dataset.map(pack_features_vector)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "R1Tyf3AodC2Y"
+ },
+ "source": [
+ "## Build, compile and train the model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "oVB9Q0B-WDn4"
+ },
+ "source": [
+ "Finally, you are ready to build the model and train it! You will build a 3 layer keras model to predict the class of the iris plant from the dataset you just processed."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "id": "tToy0FoOWG-9"
+ },
+ "outputs": [],
+ "source": [
+ "model = tf.keras.Sequential(\n",
+ " [\n",
+ " tf.keras.layers.Dense(\n",
+ " 10, activation=tf.nn.relu, input_shape=(4,)\n",
+ " ),\n",
+ " tf.keras.layers.Dense(10, activation=tf.nn.relu),\n",
+ " tf.keras.layers.Dense(3),\n",
+ " ]\n",
+ ")\n",
+ "\n",
+ "model.compile(optimizer=\"adam\", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[\"accuracy\"])\n",
+ "model.fit(dataset, epochs=5)"
+ ]
+ }
+ ],
+ "metadata": {
+ "colab": {
+ "collapsed_sections": [
+ "Tce3stUlHN0L"
+ ],
+ "name": "orc.ipynb",
+ "toc_visible": true
+ },
+ "kernelspec": {
+ "display_name": "Python 3",
+ "name": "python3"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}