-
Notifications
You must be signed in to change notification settings - Fork 288
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add ORC reader tutorial * clean up notebook * address comments * address comments * address comments * address comment: remove outputs and add desc for dataset * fix lint * fix lint: Prefer second person instead of first person. * address comments * fix typo
- Loading branch information
Showing
2 changed files
with
335 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,333 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "Tce3stUlHN0L" | ||
}, | ||
"source": [ | ||
"##### Copyright 2021 The TensorFlow Authors." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"cellView": "form", | ||
"id": "tuOe1ymfHZPu" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", | ||
"# you may not use this file except in compliance with the License.\n", | ||
"# You may obtain a copy of the License at\n", | ||
"#\n", | ||
"# https://www.apache.org/licenses/LICENSE-2.0\n", | ||
"#\n", | ||
"# Unless required by applicable law or agreed to in writing, software\n", | ||
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n", | ||
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", | ||
"# See the License for the specific language governing permissions and\n", | ||
"# limitations under the License." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "qFdPvlXBOdUN" | ||
}, | ||
"source": [ | ||
"# Apache ORC Reader" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "MfBg1C5NB3X0" | ||
}, | ||
"source": [ | ||
"<table class=\"tfo-notebook-buttons\" align=\"left\">\n", | ||
" <td>\n", | ||
" <a target=\"_blank\" href=\"https://www.tensorflow.org/io/tutorials/orc\"><img src=\"https://www.tensorflow.org/images/tf_logo_32px.png\" />View on TensorFlow.org</a>\n", | ||
" </td>\n", | ||
" <td>\n", | ||
" <a target=\"_blank\" href=\"https://colab.research.google.com/github/tensorflow/io/blob/master/docs/tutorials/orc.ipynb\"><img src=\"https://www.tensorflow.org/images/colab_logo_32px.png\" />Run in Google Colab</a>\n", | ||
" </td>\n", | ||
" <td>\n", | ||
" <a target=\"_blank\" href=\"https://github.com/tensorflow/io/blob/master/docs/tutorials/orc.ipynb\"><img src=\"https://www.tensorflow.org/images/GitHub-Mark-32px.png\" />View on GitHub</a>\n", | ||
" </td>\n", | ||
" <td>\n", | ||
" <a href=\"https://storage.googleapis.com/tensorflow_docs/io/docs/tutorials/orc.ipynb\"><img src=\"https://www.tensorflow.org/images/download_logo_32px.png\" />Download notebook</a>\n", | ||
" </td>\n", | ||
"</table>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "xHxb-dlhMIzW" | ||
}, | ||
"source": [ | ||
"## Overview\n", | ||
"\n", | ||
"Apache ORC is a popular columnar storage format. tensorflow-io package provides a default implementation of reading [Apache ORC](https://orc.apache.org/) files." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "MUXex9ctTuDB" | ||
}, | ||
"source": [ | ||
"## Setup" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "1Eh-iCRVBm0p" | ||
}, | ||
"source": [ | ||
"Install required packages, and restart runtime\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": { | ||
"id": "g7cxbf1-skn6" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!pip install tensorflow-io" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": { | ||
"id": "IqR2PQG4ZaZ0" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"import tensorflow as tf\n", | ||
"import tensorflow_io as tfio" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "EyHfC3nEzseN" | ||
}, | ||
"source": [ | ||
"### Download a sample dataset file in ORC" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "ZjEeF6Fva8UO" | ||
}, | ||
"source": [ | ||
"The dataset you will use here is the [Iris Data Set](https://archive.ics.uci.edu/ml/datasets/iris) from UCI. The data set contains 3 classes of 50 instances each, where each class refers to a type of iris plant. It has 4 attributes: (1) sepal length, (2) sepal width, (3) petal length, (4) petal width, and the last column contains the class label." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": { | ||
"id": "zaiXjZiXzrHs" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"!curl -OL https://github.com/tensorflow/io/raw/master/tests/test_orc/iris.orc\n", | ||
"!ls -l iris.orc" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "7DG9JTJ0-bzg" | ||
}, | ||
"source": [ | ||
"## Create a dataset from the file" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 35, | ||
"metadata": { | ||
"id": "ppFAjXAYsj-z" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"dataset = tfio.IODataset.from_orc(\"iris.orc\", capacity=15).batch(1)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "4xPr3f4LVdeN" | ||
}, | ||
"source": [ | ||
"Examine the dataset:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 42, | ||
"metadata": { | ||
"id": "9B1QUKG70Lzs" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"for item in dataset.take(1):\n", | ||
" print(item)\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "03qncHJPVNK3" | ||
}, | ||
"source": [ | ||
"Let's walk through an end-to-end example of tf.keras model training with ORC dataset based on iris dataset." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "tDkpKRMVcPfb" | ||
}, | ||
"source": [ | ||
"### Data preprocessing" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "nDgkfWFRVjKz" | ||
}, | ||
"source": [ | ||
"Configure which columns are features, and which column is label:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 47, | ||
"metadata": { | ||
"id": "R1OYAybz07dr" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"feature_cols = [\"sepal_length\", \"sepal_width\", \"petal_length\", \"petal_width\"]\n", | ||
"label_cols = [\"species\"]\n", | ||
"\n", | ||
"# select feature columns\n", | ||
"feature_dataset = tfio.IODataset.from_orc(\"iris.orc\", columns=feature_cols)\n", | ||
"# select label columns\n", | ||
"label_dataset = tfio.IODataset.from_orc(\"iris.orc\", columns=label_cols)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "GSYMP48vVvV0" | ||
}, | ||
"source": [ | ||
"A util function to map species to float numbers for model training:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 48, | ||
"metadata": { | ||
"id": "TQvuE7OgVs1q" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"vocab_init = tf.lookup.KeyValueTensorInitializer(\n", | ||
" keys=tf.constant([\"virginica\", \"versicolor\", \"setosa\"]),\n", | ||
" values=tf.constant([0, 1, 2], dtype=tf.int64))\n", | ||
"vocab_table = tf.lookup.StaticVocabularyTable(\n", | ||
" vocab_init,\n", | ||
" num_oov_buckets=4)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 49, | ||
"metadata": { | ||
"id": "lpf0w41iWAZ4" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"label_dataset = label_dataset.map(vocab_table.lookup)\n", | ||
"dataset = tf.data.Dataset.zip((feature_dataset, label_dataset))\n", | ||
"dataset = dataset.batch(1)\n", | ||
"\n", | ||
"def pack_features_vector(features, labels):\n", | ||
" \"\"\"Pack the features into a single array.\"\"\"\n", | ||
" features = tf.stack(list(features), axis=1)\n", | ||
" return features, labels\n", | ||
"\n", | ||
"dataset = dataset.map(pack_features_vector)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "R1Tyf3AodC2Y" | ||
}, | ||
"source": [ | ||
"## Build, compile and train the model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "oVB9Q0B-WDn4" | ||
}, | ||
"source": [ | ||
"Finally, you are ready to build the model and train it! You will build a 3 layer keras model to predict the class of the iris plant from the dataset you just processed." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 50, | ||
"metadata": { | ||
"id": "tToy0FoOWG-9" | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"model = tf.keras.Sequential(\n", | ||
" [\n", | ||
" tf.keras.layers.Dense(\n", | ||
" 10, activation=tf.nn.relu, input_shape=(4,)\n", | ||
" ),\n", | ||
" tf.keras.layers.Dense(10, activation=tf.nn.relu),\n", | ||
" tf.keras.layers.Dense(3),\n", | ||
" ]\n", | ||
")\n", | ||
"\n", | ||
"model.compile(optimizer=\"adam\", loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[\"accuracy\"])\n", | ||
"model.fit(dataset, epochs=5)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"colab": { | ||
"collapsed_sections": [ | ||
"Tce3stUlHN0L" | ||
], | ||
"name": "orc.ipynb", | ||
"toc_visible": true | ||
}, | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"name": "python3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 0 | ||
} |