-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcontrol.py
430 lines (387 loc) · 21.9 KB
/
control.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
from ikpy.chain import Chain
from ikpy.link import URDFLink
import matplotlib.pyplot
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from ikpy import geometry_utils
import requests
import time
from sklearn.externals import joblib
class Control:
"""
Realization of continuous actions, from world model to desired world.
"""
def __init__(self, init_world_model):
self.control_world_model = init_world_model.current_world_model.control
self.arm_url = init_world_model.current_world_model.url["arm"]
self.cm_to_servo_polynomial_fitter = \
joblib.load(init_world_model.current_world_model.control["cm_to_servo_polynomial_fitter"]["file_path"])
self.init_position = np.array(self.control_world_model["init_position"]) * self.control_world_model["scale"]
self.link_bounds = tuple(np.radians(np.array([-self.control_world_model["angle_degree_limit"],
self.control_world_model["angle_degree_limit"]]))) # In degrees
self.le_arm_chain = Chain(
name=self.control_world_model["chain_name"],
active_links_mask=self.control_world_model["active_links_mask"],
links=[
URDFLink(
name="link6",
translation_vector=np.array(self.control_world_model["link_lengths"]["link6"])
* self.control_world_model["scale"],
orientation=self.control_world_model["link_orientations"]["link6"],
rotation=np.array(self.control_world_model["joint_rotation_axis"]["link6"]),
bounds=self.link_bounds
),
URDFLink(
name="link5",
translation_vector=np.array(self.control_world_model["link_lengths"]["link5"])
* self.control_world_model["scale"],
orientation=self.control_world_model["link_orientations"]["link5"],
rotation=np.array(self.control_world_model["joint_rotation_axis"]["link5"]),
bounds=self.link_bounds
),
URDFLink(
name="link4",
translation_vector=np.array(self.control_world_model["link_lengths"]["link4"])
* self.control_world_model["scale"],
orientation=self.control_world_model["link_orientations"]["link4"],
rotation=np.array(self.control_world_model["joint_rotation_axis"]["link4"]),
bounds=self.link_bounds
),
URDFLink(
name="link3",
translation_vector=np.array(self.control_world_model["link_lengths"]["link3"])
* self.control_world_model["scale"],
orientation=self.control_world_model["link_orientations"]["link3"],
rotation=np.array(self.control_world_model["joint_rotation_axis"]["link3"]),
bounds=self.link_bounds
),
URDFLink(
name="link2",
translation_vector=np.array(self.control_world_model["link_lengths"]["link2"])
* self.control_world_model["scale"],
orientation=self.control_world_model["link_orientations"]["link2"],
rotation=np.array(self.control_world_model["joint_rotation_axis"]["link2"]),
bounds=self.link_bounds
),
URDFLink(
name="link1",
translation_vector=np.array(self.control_world_model["link_lengths"]["link1"])
* self.control_world_model["scale"],
orientation=self.control_world_model["link_orientations"]["link1"],
rotation=np.array(self.control_world_model["joint_rotation_axis"]["link1"]),
bounds=self.link_bounds
)
])
def xyz_to_servo_range(self, xyz, current_servo_monotony):
"""
Converts 3D cartesian centimeter coordinates to servo values in [500, 2500].
:param xyz: Array of 3 elements of a 3D cartesian systems of centimeters.
:param current_servo_monotony: List of 6 positive or negative servo rotation directions.
:return: List of 6 servo values in [500, 2500].
"""
k = self.le_arm_chain.inverse_kinematics(geometry_utils.to_transformation_matrix(xyz, np.eye(3)))
k = np.multiply(k, np.negative(current_servo_monotony))
return self.radians_to_servo_range(k)
def servo_range_to_xyz(self, servo_range, current_servo_monotony):
"""
Converts servo values in [500, 2500] to 3D cartesian centimeter coordinates.
:param servo_range: List of 6 servo values in [500, 2500].
:param current_servo_monotony: List of 6 positive or negative servo rotation directions.
:return: Array of 3 elements of a 3D cartesian systems of centimeters.
"""
return geometry_utils.from_transformation_matrix(
self.le_arm_chain.forward_kinematics(
np.multiply(self.servo_range_to_radians(servo_range), np.negative(current_servo_monotony)),
))[0][:3]
@staticmethod
def servo_range_to_radians(x, x_min=500.0, x_max=2500.0, scaled_min=(-np.pi / 2.0), scaled_max=(np.pi / 2.0)):
"""
Converts servo values in [500, 2500] to angle radians.
:param x: List of 6 servo values.
:param x_min: Scalar float, minimum servo value of 90 degrees angle (default = 500).
:param x_max: Scalar float, maximum servo value of 90 degrees angle(default = 2500).
:param scaled_min: Scalar float, minimum radians value of +90 degrees angle(default = -π/2).
:param scaled_max: Scalar float, maximum radians value of +90 degrees angle(default = π/2).
:return: List of 6 angles in radians.
"""
x_std = (np.array(x) - x_min) / (x_max - x_min)
return x_std * (scaled_max - scaled_min) + scaled_min
@staticmethod
def radians_to_servo_range(x, x_min=(-np.pi / 2.0), x_max=(np.pi / 2.0), scaled_min=500.0, scaled_max=2500.0):
"""
Converts angle radians to servo values in [500, 2500].
:param x: List of 6 angles in radians.
:param x_min: Scalar float, minimum radians value of +90 degrees angle(default = -π/2).
:param x_max: Scalar float, maximum radians value of +90 degrees angle(default = π/2).
:param scaled_min: Scalar float, minimum servo value of 90 degrees angle (default = 500).
:param scaled_max: Scalar float, maximum servo value of 90 degrees angle(default = 2500).
:return: List of 6 servo values.
"""
x_std = (np.array(x) - x_min) / (x_max - x_min)
return (np.round(x_std * (scaled_max - scaled_min) + scaled_min, 0)).astype(int)
def get_kinematic_angle_trajectory(self, from_angle_radians_in, to_angle_radians_in, servo_monotony, steps=10):
"""
Creates a discrete end-effector trajectory, using radians.
:param from_angle_radians_in: Current servo angles, list of 6 angles in radians.
:param to_angle_radians_in: Desired servo angles, list of 6 angles in radians.
:param servo_monotony: List of 6 positive or negative servo rotation directions.
:param steps: Scalar integer, the total steps for the end effector trajectory.
:return: List of end-effector radian trajectory steps.
"""
assert self.control_world_model["min_steps"] < steps < self.control_world_model["max_steps"]
from_angle_radians = np.multiply(from_angle_radians_in, servo_monotony)
to_angle_radians = np.multiply(to_angle_radians_in, servo_monotony)
step_angle_radians = []
for index in range(len(to_angle_radians_in)):
step_angle_radians.append((from_angle_radians[index] - to_angle_radians[index]) / float(steps))
angle_trajectory = []
step_angle_radians = np.array(step_angle_radians)
current_angles = np.array(from_angle_radians)
# angle_trajectory.append(current_angles)
for _ in range(steps):
current_angles = np.add(current_angles, step_angle_radians)
angle_trajectory.append(current_angles)
return angle_trajectory
def get_servo_range_trajectory(self, from_servo_range_in, to_servo_range_in, steps=10):
"""
Creates a discrete end-effector trajectory, using servo values.
:param from_servo_range_in: Current servo values, list of 6 values in [500, 2500].
:param to_servo_range_in: Desired servo values, list of 6 values in [500, 2500].
:param steps: Scalar integer, the total steps for the end effector trajectory.
:return: List of end-effector servo value trajectory steps.
"""
assert self.control_world_model["min_steps"] < steps < self.control_world_model["max_steps"]
from_servo_range = np.array(from_servo_range_in)
to_servo_range = np.array(to_servo_range_in)
if self.control_world_model["verbose"]:
print("from_servo_range: ", from_servo_range)
print("to_servo_range: ", to_servo_range)
step_servo_range = []
for index in range(len(to_servo_range)):
step_servo_range.append((to_servo_range[index] - from_servo_range[index]) / float(steps))
if self.control_world_model["verbose"]:
print("step_servo_range: ", step_servo_range)
servo_range_trajectory = []
step_servo_range = np.array(step_servo_range)
current_servo_range = np.array(from_servo_range)
for _ in range(steps):
current_servo_range = np.add(current_servo_range, step_servo_range)
servo_range_trajectory.append(current_servo_range)
return np.array(np.round(servo_range_trajectory, 0)).astype(int)
def initialize_arm(self, last_servo_values):
"""
Moves the end-effector to the (0, 0, 0) position of the 3d cartesian.
:param last_servo_values: List of the current arm servo positions.
:return: True if succeeded.
"""
action_successful = False
target_position = np.array(self.init_position) * self.control_world_model["scale"]
action_successful = self.move_arm(target_position, last_servo_values)
print("=== Arm initialized")
return action_successful
def move_arm_above_xyz(self, xyz, last_servo_values, height):
"""
Moves the end-effector at a specific 3D cartesian centimeter position, plus extra centimeters high.
:param xyz: Array of 3 elements of a 3D cartesian systems of centimeters.
:param last_servo_values: List of the current arm servo positions.
:param height: Scalar positive float. Desired centimeters above xyz, on the z axis.
:return: True if succeeded.
"""
action_successful = False
xyz[2] = height
target_position = np.array(xyz) * self.control_world_model["scale"]
if self.control_world_model["send_requests"]:
action_successful = self.move_arm(target_position, last_servo_values)
print("=== Arm above object")
return action_successful
def move_arm_up(self, last_servo_values, height):
"""
Moves the end-effector at a specific 3D cartesian centimeter position, plus extra centimeters high.
:param last_servo_values: List of the current arm servo positions.
:param height: Scalar positive float. Desired centimeters above xyz, on the z axis.
:return: True if succeeded.
"""
action_successful = False
xyz = np.round(self.servo_range_to_xyz(last_servo_values, self.control_world_model["current_servo_monotony"]),
2)
print("last_servo_xyz", xyz)
xyz[2] = height
target_position = np.array(xyz) * self.control_world_model["scale"]
if self.control_world_model["send_requests"]:
action_successful = self.move_arm(target_position, last_servo_values)
print("=== Arm up")
return action_successful
def move_arm_to_object(self, xyz, last_servo_values):
"""
Moves the end-effector to the object's position of the 3d cartesian.
:param xyz: Array of 3 elements of a 3D cartesian systems of centimeters.
:param last_servo_values: List of the current arm servo positions.
:return: True if succeeded.
"""
action_successful = False
target_position = np.array(xyz) * self.control_world_model["scale"]
if self.control_world_model["send_requests"]:
action_successful = self.move_arm(target_position, last_servo_values)
print("=== Arm to object")
return action_successful
def close_hand(self, object_side_length):
"""
Closes the gripper enough, to grip an object of a specific length in cm.
:param object_side_length: Scalar float, object width in centimeters.
:return: True if succeeded.
"""
action_successful = False
closed_length = object_side_length * self.control_world_model["closed_hand_distance_ratio"]
servo_range = int(self.cm_to_servo_polynomial_fitter(closed_length))
if self.control_world_model["verbose"]:
print("cm: {}, predicted servo value: {}".format(closed_length, servo_range))
if self.control_world_model["send_requests"]:
action_successful = self.send_restful_servo_range(self.control_world_model["gripping_gripper_servo"],
servo_range)
print("=== Gripper closed")
return action_successful
def open_hand(self, object_side_length):
"""
Opens the gripper enough, to fit an object of a specific length in cm.
:param object_side_length: Scalar float, object width in centimeters.
:return: True if succeeded.
"""
action_successful = False
opened_length = object_side_length * self.control_world_model["opened_hand_distance_ratio"]
servo_range = int(self.cm_to_servo_polynomial_fitter(opened_length))
if self.control_world_model["verbose"]:
print("cm: {}, predicted servo value: {}".format(opened_length, servo_range))
if self.control_world_model["send_requests"]:
action_successful = self.send_restful_servo_range(self.control_world_model["gripping_gripper_servo"],
servo_range)
print("=== Gripper opened")
return action_successful
def send_restful_servo_range(self, servo, in_range):
"""
Sends a direct servo value in [500, 2500], to a specific servo in [1, 6].
:param servo: Scalar integer, the servo id in [1, 6].
:param in_range: Scalar integer, servo value in [500, 2500].
:return: True if succeeded.
"""
action_successful = False
url = self.control_world_model["base_put_url"].format(self.arm_url, servo, in_range)
requests.put(url, data="")
time.sleep(self.control_world_model["command_delay"])
action_successful = True
return action_successful
def send_restful_trajectory_requests(self, kinematic_servo_range_trajectory):
"""
Sends a full servo value trajectory of discrete steps, to the arm.
:param kinematic_servo_range_trajectory:
:return: True if succeeded.
"""
action_successful = False
servo_mask = self.control_world_model["active_links_mask"] # servo mask
for step in kinematic_servo_range_trajectory:
for i in range(len(step)):
if servo_mask[i]:
servo_value = step[i]
current_servo = self.control_world_model["servo_count"] - i
url = self.control_world_model["base_put_url"].format(self.arm_url, current_servo, servo_value)
if self.control_world_model["verbose"]:
print(url)
try:
r = requests.put(url, data="")
if r.status_code != 200:
break
except Exception as e:
print("Exception: {}".format(str(e)))
time.sleep(self.control_world_model["command_delay"])
if self.control_world_model["verbose"]:
print("")
action_successful = True
return action_successful
def move_arm(self, target_position, last_servo_locations, trajectory_steps=-1):
"""
Gradually moves the end-effector of the robotic arm, from the latest known servo positions, to a desired
3D centimeter cartesian position.
:param target_position: List of 3 values, the desired end-effector, 3D centimeter cartesian position.
:param last_servo_locations: List of the latest 6 servo values in [500, 2500].
:param trajectory_steps: Scalar integer, the total steps for the end effector trajectory.
:return: True if successfully move the arm.
"""
action_successful = False
last_servo_values = self.init_position
if trajectory_steps == -1:
trajectory_steps = self.control_world_model["trajectory_steps"]
# TODO: move last position to world model
if self.control_world_model["detect_last_position"]: # TODO: get last servo values, world may be old...?
last_servo_values = last_servo_locations
try:
if self.control_world_model["send_requests"]:
url = "http://{}/".format(self.arm_url)
r = requests.get(url, data="")
if r.status_code == 200:
result = r.json()["variables"]
last_servo_values = np.array(
[result["servo6"], result["servo5"], result["servo4"], result["servo3"],
result["servo2"], result["servo1"]])
if self.control_world_model["verbose"]:
print("last_servo_values: ", last_servo_values)
print("last_servo_xyz", np.round(
self.servo_range_to_xyz(last_servo_values,
self.control_world_model["current_servo_monotony"]), 2))
except Exception as e_pos:
print("Exception: {}".format(str(e_pos)))
if self.control_world_model["center_init"]:
if self.control_world_model["verbose"]:
print("Top position (radians): ",
self.le_arm_chain.inverse_kinematics(geometry_utils.to_transformation_matrix(
self.init_position,
np.eye(3))))
if self.control_world_model["show_plots"]:
ax = matplotlib.pyplot.figure().add_subplot(111, projection='3d')
self.le_arm_chain.plot(self.le_arm_chain.inverse_kinematics(geometry_utils.to_transformation_matrix(
self.init_position,
np.eye(3))), ax, target=self.init_position)
matplotlib.pyplot.show()
init_position2 = self.init_position
init_angle_radians2 = self.le_arm_chain.inverse_kinematics(geometry_utils.to_transformation_matrix(
init_position2,
np.eye(3)))
from_servo_range = self.radians_to_servo_range(init_angle_radians2)
if self.control_world_model["detect_last_position"]:
from_servo_range = last_servo_values
to_servo_range = self.xyz_to_servo_range(target_position, self.control_world_model["current_servo_monotony"])
kinematic_servo_range_trajectory = self.get_servo_range_trajectory(from_servo_range, to_servo_range,
trajectory_steps)
if self.control_world_model["verbose"]:
print("init_angle_radians2: {}, from_servo_range: {}, to_servo_range: {}, servo_range_trajectory: {}"
.format(init_angle_radians2, from_servo_range, to_servo_range, kinematic_servo_range_trajectory))
if self.control_world_model["show_plots"]:
ax = matplotlib.pyplot.figure().add_subplot(111, projection='3d')
self.le_arm_chain.plot(self.le_arm_chain.inverse_kinematics(geometry_utils.to_transformation_matrix(
target_position,
np.eye(3))), ax,
target=target_position)
matplotlib.pyplot.show()
if self.control_world_model["send_requests"]:
action_successful = self.send_restful_trajectory_requests(kinematic_servo_range_trajectory)
return action_successful
if __name__ == '__main__':
# Sequence for testing
from world_model import WorldModel
current_world_model = WorldModel()
control = Control(current_world_model)
control.control_world_model["send_requests"] = False
control.control_world_model["center_init"] = False
control.control_world_model["detect_last_position"] = False
last_servo_values_testing = current_world_model.current_world_model.location["servo_values"]
control.initialize_arm(last_servo_values_testing)
control.open_hand(4.4)
container_xyz = [-0.1, 25.0, 12]
control.move_arm(container_xyz, last_servo_values_testing)
control.close_hand(4.4)
# target_position = np.array([12.5, -12.5, 2.0]) * coordination.control.scale
target_position_testing = np.array([20, -20.0, 20]) * control.control_world_model["scale"]
# target_position = np.array([12.5, -12.5, 25]) * coordination.control.scale
# target_position = np.array([-16, 0.0, 10]) * coordination.control.scale
# target_position = np.array([-20, -20, 25]) * coordination.control.scale
# target_position = np.array([0, 0, 0]) * coordination.control.scale
# target_position = np.array([-13.12, 0.27, 1.5]) * coordination.control.scale
action_successful_testing = control.move_arm(np.array(target_position_testing), last_servo_values_testing)