-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpeer_data.py
141 lines (106 loc) · 4.14 KB
/
peer_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
"""
Generates a quick summary of a realisation
"""
from matplotlib import pyplot as plt
from matplotlib.animation import FuncAnimation
from numpy import array, sum, zeros
from pickle import load
from utils import load_automaton_data
from os import path
def data_summary(model_name, simulation_index):
data = load_automaton_data(model_name, simulation_index)
info_string = data["info"]
density_data = data["density_data"]
cluster_data = data["cluster_data"]
series_data = array(data["series_data"])
print(f"Info string: {info_string}")
print(f"Density data length: {len(density_data)}")
if cluster_data is not None:
print(f"Cluster data length: {len(cluster_data)}")
else:
print("Cluster data does not exist")
if series_data is not None:
print(f"Series data shape: {series_data.shape}")
else:
print("Series data does not exist")
def plot_density(model_name, simulation_index):
data = load_automaton_data(model_name, simulation_index)
info = data["info"]
density_data = data["density_data"]
plt.title(f"Variation of density with time for {info}")
plt.xlabel("Time (N^2)")
plt.ylabel("Density")
plt.plot(density_data)
plt.show()
def plot_average_density(model_name, simulation_indices):
data = load_automaton_data(model_name, simulation_indices[0])
density_data = data["density_data"]
data_length = len(density_data)
average_density = zeros(data_length)
for simulation_index in simulation_indices:
data = load_automaton_data(model_name, simulation_index)
density_data = data["density_data"]
average_density += array(density_data)
average_density /= len(simulation_indices)
plt.title(f"Average density for {model_name}")
plt.xlabel("Time (N^2)")
plt.ylabel("Density")
plt.plot(average_density)
plt.show()
def plot_final_lattice(model_name, simulation_index):
data = load_automaton_data(model_name, simulation_index)
series_data = data["series_data"]
final_lattice = data["final_lattice"]
plt.title(f"Final lattice for {model_name}")
plt.imshow(final_lattice)
plt.show()
for i in range(len(final_lattice)):
for j in range(len(final_lattice[0])):
print(int(final_lattice[i][j]), end=" ")
print()
def print_cluster_data(model_name, simulation_index):
data = load_automaton_data(model_name, simulation_index)
cluster_data = data["cluster_data"]
if cluster_data is not None:
for iteration, update in enumerate(cluster_data):
print(f"iteration {iteration}: {update}")
else:
print("Cluster data does not exist")
def visualize_series_data(model_name, simulation_index):
global series_data, im, info
data = load_automaton_data(model_name, simulation_index)
info = data["info"]
series_data = data["series_data"]
if series_data is not None:
num_frames = len(series_data)
fig = plt.figure()
im = plt.imshow(series_data[0])
animation = FuncAnimation(fig, animate, frames=num_frames, interval=100, repeat=False)
plt.show()
else:
print("Series data does not exist")
def animate(i):
plt.title(f"Frame {i} of {info}")
im.set_array(series_data[i])
return [im]
def see_tricritical_lattices(p, q):
folder_path = path.join(path.dirname(__file__), "outputs")
file_name = f"lattices_{p:.2f}_{q:.2f}.pkl"
file_path = path.join(folder_path, file_name)
lattices = load(open(file_path, "rb"))
for i, lattice in enumerate(lattices):
density = sum(lattice) / (len(lattice) * len(lattice[0]))
plt.title(f"Lattice {i}, density: {density:.2f}")
plt.imshow(lattice)
plt.show()
if __name__ == "__main__":
# model = "tricritical"
# simulation_index = 0
# simulation_indices = range(0, 7)
# data_summary(model, simulation_index)
# plot_density(model, simulation_index)
# plot_average_density(model, simulation_indices)
# plot_final_lattice(model, simulation_index)
# print_cluster_data(model, simulation_index)
# visualize_series_data(model, simulation_index)
see_tricritical_lattices(0.7, 0)