-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
202 lines (164 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import json
import logging
import os
import torch
import torch.nn.functional as F
from tqdm import tqdm
from reader import models, utils
from reader.data.dictionary import Dictionary
from reader.data.dataset import ReadingDataset, BatchSampler
from reader.models import ARCH_MODEL_REGISTRY, ARCH_CONFIG_REGISTRY
def get_args():
parser = argparse.ArgumentParser('Question Answering - Training')
parser.add_argument('--seed', default=42, type=int, help='pseudo random number generator seed')
# Add data arguments
parser.add_argument('--data', default='data', help='path to data directory')
parser.add_argument('--max-tokens', default=16000, type=int, help='maximum number of tokens in a batch')
parser.add_argument('--batch-size', default=32, type=int, help='maximum number of sentences in a batch')
parser.add_argument('--num-workers', default=4, type=int, help='number of data workers')
# Add model arguments
parser.add_argument('--arch', default='drqa', choices=ARCH_MODEL_REGISTRY.keys(), help='model architecture')
# Add optimization arguments
parser.add_argument('--max-epoch', default=50, type=int, help='force stop training at specified epoch')
parser.add_argument('--clip-norm', default=10, type=float, help='clip threshold of gradients')
parser.add_argument('--lr', default=2e-3, type=float, help='learning rate')
parser.add_argument('--momentum', default=0.99, type=float, help='momentum factor')
parser.add_argument('--weight-decay', default=0.0, type=float, help='weight decay')
parser.add_argument('--lr-shrink', default=0.1, type=float, help='learning rate shrink factor for annealing')
parser.add_argument('--min-lr', default=1e-6, type=float, help='minimum learning rate')
# Add checkpoint arguments
parser.add_argument('--log-file', default=None, help='path to save logs')
parser.add_argument('--checkpoint-dir', default='checkpoints', help='path to save checkpoints')
parser.add_argument('--restore-file', default='checkpoint_last.pt', help='filename to load checkpoint')
parser.add_argument('--save-interval', type=int, default=1, help='save a checkpoint every N epochs')
parser.add_argument('--no-save', action='store_true', help='don\'t save models or checkpoints')
parser.add_argument('--epoch-checkpoints', action='store_true', help='store all epoch checkpoints')
# Parse twice as model arguments are not known the first time
args, _ = parser.parse_known_args()
model_parser = parser.add_argument_group(argument_default=argparse.SUPPRESS)
ARCH_MODEL_REGISTRY[args.arch].add_args(model_parser)
args = parser.parse_args()
ARCH_CONFIG_REGISTRY[args.arch](args)
return args
def main(args):
if not torch.cuda.is_available():
raise NotImplementedError('Training on CPU is not supported.')
torch.manual_seed(args.seed)
utils.init_logging(args)
# Load a dictionary
dictionary = Dictionary.load(os.path.join(args.data, 'dict.txt'))
logging.info('Loaded a word dictionary with {} words'.format(len(dictionary)))
char_dictionary = Dictionary.load(os.path.join(args.data, 'char_dict.txt'))
logging.info('Loaded a character dictionary with {} words'.format(len(char_dictionary)))
# Load a training and validation dataset
with open(os.path.join(args.data, 'train.json')) as file:
train_contents = json.load(file)
train_dataset = ReadingDataset(
args, train_contents['contexts'], train_contents['examples'], dictionary,
char_dictionary, skip_no_answer=True, single_answer=True,
)
logging.info('Created a training dataset of {} examples'.format(len(train_dataset)))
with open(os.path.join(args.data, 'dev.json')) as file:
contents = json.load(file)
valid_dataset = ReadingDataset(
args, contents['contexts'], contents['examples'], dictionary, char_dictionary,
feature_dict=train_dataset.feature_dict, skip_no_answer=True, single_answer=True
)
logging.info('Created a validation dataset of {} examples'.format(len(valid_dataset)))
# Build a model
model = models.build_model(args, dictionary, char_dictionary).cuda()
logging.info('Built a model with {} parameters'.format(sum(p.numel() for p in model.parameters())))
# Build an optimizer and a learning rate schedule
optimizer = torch.optim.Adamax(model.parameters(), args.lr, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=3, factor=args.lr_shrink)
# Load last checkpoint if one exists
state_dict = utils.load_checkpoint(args, model, optimizer, lr_scheduler)
last_epoch = state_dict['last_epoch'] if state_dict is not None else -1
for epoch in range(last_epoch + 1, args.max_epoch):
train_loader = torch.utils.data.DataLoader(
train_dataset, num_workers=args.num_workers, collate_fn=train_dataset.collater,
batch_sampler=BatchSampler(train_dataset, args.max_tokens, args.batch_size, shuffle=True, seed=args.seed)
)
model.train()
stats = {'loss': 0., 'lr': 0., 'num_tokens': 0., 'batch_size': 0., 'grad_norm': 0., 'clip': 0.}
progress_bar = tqdm(train_loader, desc='| Epoch {:03d}'.format(epoch), leave=False)
for batch_id, sample in enumerate(progress_bar):
# Forward and backward pass
sample = utils.move_to_cuda(sample)
start_scores, end_scores = model(
sample['context_tokens'], sample['question_tokens'],
context_chars=sample['context_chars'],
question_chars=sample['question_chars'],
context_features=sample['context_features']
)
start_loss = F.nll_loss(start_scores, torch.LongTensor(sample['answer_start']).view(-1).cuda())
end_loss = F.nll_loss(end_scores, torch.LongTensor(sample['answer_end']).view(-1).cuda())
loss = start_loss + end_loss
optimizer.zero_grad()
loss.backward()
# Clip gradients and fix embeddings of infrequent words
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_norm)
if args.tune_embed is not None and hasattr(model, 'embedding'):
model.embedding.weight.grad[args.tune_embed:] = 0
optimizer.step()
# Update statistics for progress bar
stats['loss'] += loss.item()
stats['lr'] += optimizer.param_groups[0]['lr']
stats['num_tokens'] += sample['num_tokens'] / len(sample['id'])
stats['batch_size'] += len(sample['id'])
stats['grad_norm'] += grad_norm
stats['clip'] += 1 if grad_norm > args.clip_norm else 0
progress_bar.set_postfix({key: '{:.4g}'.format(value / (batch_id + 1)) for key, value in stats.items()}, refresh=True)
logging.info('Epoch {:03d}: {}'.format(epoch, ' | '.join(key + ' {:.4g}'.format(value / len(progress_bar)) for key, value in stats.items())))
# Adjust learning rate based on validation result
f1_score = validate(args, model, valid_dataset, epoch)
lr_scheduler.step(f1_score)
# Save checkpoints
if epoch % args.save_interval == 0:
utils.save_checkpoint(args, model, optimizer, lr_scheduler, epoch, f1_score)
if optimizer.param_groups[0]['lr'] <= args.min_lr:
logging.info('Done training!')
break
def validate(args, model, valid_dataset, epoch):
model.eval()
valid_loader = torch.utils.data.DataLoader(
valid_dataset, num_workers=args.num_workers, collate_fn=valid_dataset.collater,
batch_sampler=BatchSampler(valid_dataset, args.max_tokens, args.batch_size, shuffle=True, seed=args.seed)
)
stats = {'start_acc': 0., 'end_acc': 0., 'token_match': 0., 'f1': 0., 'exact_match': 0., 'num_tokens': 0., 'batch_size': 0.}
progress_bar = tqdm(valid_loader, desc='| Epoch {:03d}'.format(epoch), leave=False)
for batch_id, sample in enumerate(progress_bar):
sample = utils.move_to_cuda(sample)
with torch.no_grad():
start_scores, end_scores = model(
sample['context_tokens'], sample['question_tokens'],
context_chars=sample['context_chars'],
question_chars=sample['question_chars'],
context_features=sample['context_features']
)
start_target, end_target = sample['answer_start'], sample['answer_end']
stats['num_tokens'] += sample['num_tokens']
stats['batch_size'] += len(sample['id'])
start_pred, end_pred, _ = model.decode(start_scores, end_scores, max_len=15)
stats['start_acc'] += sum(ex_pred in ex_target for ex_pred, ex_target in zip(start_pred, start_target))
stats['end_acc'] += sum(ex_pred in ex_target for ex_pred, ex_target in zip(end_pred, end_target))
for i, (start_ex, end_ex) in enumerate(zip(start_pred, end_pred)):
# Check if the pair of predicted tokens in the targets
stats['token_match'] += any((start_ex == s and end_ex == t) for s, t in zip(start_target[i], end_target[i]))
# Official evaluation
text_target = valid_dataset.answer_texts[sample['id'][i]]
context = valid_dataset.contexts[valid_dataset.context_ids[sample['id'][i]]]
start_idx = context['offsets'][start_ex][0]
end_idx = context['offsets'][end_ex][1]
text_pred = context['text'][start_idx: end_idx]
stats['exact_match'] += utils.metric_max_over_ground_truths(utils.exact_match_score, text_pred, text_target)
stats['f1'] += utils.metric_max_over_ground_truths(utils.f1_score, text_pred, text_target)
progress_bar.set_postfix({key: '{:.3g}'.format(value / (stats['batch_size'] if key != 'batch_size' else (batch_id + 1)))
for key, value in stats.items()}, refresh=True)
logging.info('Epoch {:03d}: {}'.format(epoch, ' | '.join(key + ' {:.3g}'.format(
value / (stats['batch_size'] if key != 'batch_size' else len(progress_bar))) for key, value in stats.items())))
return stats['f1'] / stats['batch_size']
if __name__ == '__main__':
args = get_args()
main(args)