-
Notifications
You must be signed in to change notification settings - Fork 1
/
DESCRIPTION
49 lines (48 loc) · 1.81 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Package: tidyrules
Type: Package
Title: Utilities to Retrieve Rulelists from Model Fits, Filter, Prune, Reorder and Predict on Unseen Data
Version: 0.2.7
Authors@R: c(
person("Srikanth", "Komala Sheshachala", email = "sri.teach@gmail.com", role = c("aut", "cre")),
person("Amith Kumar", "Ullur Raghavendra", email = "amith54@gmail.com", role = c("aut"))
)
Maintainer: Srikanth Komala Sheshachala <sri.teach@gmail.com>
Depends: R (>= 3.6.0),
Imports:
stringr (>= 1.3.1),
magrittr (>= 1.5),
purrr (>= 0.3.2),
partykit (>= 1.2.2),
rlang (>= 1.1.3),
generics (>= 0.1.3),
checkmate (>= 2.3.1),
tidytable (>= 0.11.0),
data.table (>= 1.14.6),
DescTools (>= 0.99.54),
MetricsWeighted (>= 1.0.3),
cli (>= 3.6.2),
glue (>= 1.7.0),
pheatmap (>= 1.0.12),
proxy (>= 0.4.27),
tibble (>= 3.2.1),
Suggests:
AmesHousing (>= 0.0.3),
dplyr (>= 0.8),
C50 (>= 0.1.2),
Cubist (>= 0.2.2),
rpart (>= 1.2.2),
rpart.plot (>= 3.0.7),
modeldata (>= 0.0.1),
testthat (>= 2.0.1),
MASS (>= 7.3.50),
mlbench (>= 2.1.1),
rmarkdown (>= 1.13),
palmerpenguins (>= 0.1.1),
Description: Provides a framework to work with decision rules. Rules can be extracted from supported models, augmented with (custom) metrics using validation data, manipulated using standard dataframe operations, reordered and pruned based on a metric, predict on unseen (test) data. Utilities include; Creating a rulelist manually, Exporting a rulelist as a SQL case statement and so on. The package offers two classes; rulelist and ruleset based on dataframe.
URL: https://github.com/talegari/tidyrules, https://talegari.github.io/tidyrules/
BugReports: https://github.com/talegari/tidyrules/issues
License: GPL-3
Encoding: UTF-8
LazyData: true
RoxygenNote: 7.3.1
Roxygen: list(markdown = TRUE)