-
Notifications
You must be signed in to change notification settings - Fork 245
/
Copy pathdistributed_offline_training.py
57 lines (46 loc) · 1.49 KB
/
distributed_offline_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import d3rlpy
# This script needs to be launched by using torchrun command.
# $ torchrun \
# --nnodes=1 \
# --nproc_per_node=3 \
# --rdzv_id=100 \
# --rdzv_backend=c10d \
# --rdzv_endpoint=localhost:29400 \
# examples/distributed_offline_training.py
def main() -> None:
# GPU version:
# rank = d3rlpy.distributed.init_process_group("nccl")
rank = d3rlpy.distributed.init_process_group("gloo")
print(f"Start running on rank={rank}.")
# GPU version:
# device = f"cuda:{rank}"
device = "cpu:0"
# setup algorithm
cql = d3rlpy.algos.CQLConfig(
actor_learning_rate=1e-3,
critic_learning_rate=1e-3,
alpha_learning_rate=1e-3,
).create(device=device, enable_ddp=True)
# prepare dataset
dataset, env = d3rlpy.datasets.get_pendulum()
# disable logging on rank != 0 workers
logger_adapter: d3rlpy.logging.LoggerAdapterFactory
evaluators: dict[str, d3rlpy.metrics.EvaluatorProtocol]
if rank == 0:
evaluators = {"environment": d3rlpy.metrics.EnvironmentEvaluator(env)}
logger_adapter = d3rlpy.logging.FileAdapterFactory()
else:
evaluators = {}
logger_adapter = d3rlpy.logging.NoopAdapterFactory()
# start training
cql.fit(
dataset,
n_steps=10000,
n_steps_per_epoch=1000,
evaluators=evaluators,
logger_adapter=logger_adapter,
show_progress=rank == 0,
)
d3rlpy.distributed.destroy_process_group()
if __name__ == "__main__":
main()