Skip to content

Latest commit

 

History

History
85 lines (57 loc) · 1.74 KB

README.md

File metadata and controls

85 lines (57 loc) · 1.74 KB

PyTextDistance

PyTextDistance provides implementations to compute distance between two words, using Cython memoryview, Cython array and cpython array.

Included Algorithms

  • Levenshtein Distance
  • Damerau-Levenshtein Distance
  • Jaro Distance
  • Jaro-Winkler Distance
  • Hamming Distance

Requirements

  • Python 3.7

Environment

  • Windows10

Usage

pytextdistance

  • Cython implementations to compute distance between two words.
>>> from pytextdistance import levenshtein
>>> levenshtein('kitten', 'sitting')
3

>>> from pytextdistance import damerau_levenshtein
>>> damerau_levenshtein('a cat', 'a abct')
2

>>> from pytextdistance import normalized_levenshtein
>>> normalized_levenshtein('sunday', 'saturday')
0.375

>>> from pytextdistance import jaro
>>> jaro('dicksonx', 'dixon')
0.7666666666666666

>>> from pytextdistance import jaro_winkler
>>> jaro_winkler('dicksonx', 'dixon')
0.8133333333333332

>>> from pytextdistance import hamming
>>> hamming('BADC', 'ABCD')
4

pytextdistance_go

  • A library for Python, made with Go lang.
>>> from pytextdistance_go import levenshtein as levenshtein_go
>>> levenshtein_go('kitten', 'sitting')
3

>>> from pytextdistance_go import damerau_levenshtein as damerau_levenshtein_go
>>> damerau_levenshtein_go('a cat', 'a abct')
2

>>> from pytextdistance_go import normalized_levenshtein as normalized_levenshtein_go 
>>> normalized_levenshtein_go('sunday', 'saturday')
0.375

>>> from pytextdistance_go import jaro as jaro_go
>>> jaro_go('dicksonx', 'dixon')
0.7666666666666666

>>> from pytextdistance_go import jaro_winkler as jaro_winkler_go
>>> jaro_winkler('dicksonx', 'dixon')
0.8133333333333332

>>> from pytextdistance_go import hamming as hamming_go
>>> hamming_go('BADC', 'ABCD')
4