-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcollaborative.py
57 lines (47 loc) · 2.28 KB
/
collaborative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
df_imdb = pd.read_csv('imdb.csv')
df_rating = pd.read_csv('ratings.csv')
# Identify movies that exist in both datasets
common_movies = set(df_imdb['Series_Title']).intersection(set(df_rating['Series_Title']))
# Filter both datasets to include only movies found in both
df_imdb = df_imdb[df_imdb['Series_Title'].isin(common_movies)]
df_rating = df_rating[df_rating['Series_Title'].isin(common_movies)]
# Merge movie and rating data
data = pd.merge(df_rating, df_imdb, on='Series_Title', how='inner')
# Create a user-item matrix
user_item_matrix = data.pivot_table(index='user_id', columns='Series_Title', values='rating')
user_item_matrix = user_item_matrix.fillna(0)
# Calculate cosine similarity between users
user_similarity = cosine_similarity(user_item_matrix)
user_similarity_df = pd.DataFrame(user_similarity, index=user_item_matrix.index, columns=user_item_matrix.index)
# Generate recommendations based on cosine similarity
def get_recommendations(movie_title):
# Get the index of users who like the movie
movie_users = user_item_matrix[user_item_matrix[movie_title] > 0].index
# Get the similarity scores for these users
similarity_scores = user_similarity_df.loc[movie_users].mean(axis=0)
# Sort the scores
similarity_scores = similarity_scores.sort_values(ascending=False)
# Get top similar users
top_users = similarity_scores.index[1:11] # exclude the target user itself
# Get movie recommendations from other similar users
recommended_movies = user_item_matrix.loc[top_users].mean(axis=0)
recommended_movies = recommended_movies.sort_values(ascending=False)
return recommended_movies.index[:10]
def get_recommend_list(movie_title):
# Check if the movie exists in the dataset
if movie_title in user_item_matrix.columns:
return get_recommendations(movie_title)
else:
return []
def recommend(movie_title):
if movie_title in user_item_matrix.columns:
recommendations = get_recommendations(movie_title)
for i, recommendation in enumerate(recommendations, 1):
print(f"{i}. {recommendation}")
else:
print("Movie not found")
if __name__ == "__main__":
movie_title = 'The Shawshank Redemption'
recommend(movie_title)